
Ludmila Belayev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1767135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	cRel and Wnt5a/Frizzled 5 Receptor-Mediated Inflammatory Regulation Reveal Novel Neuroprotectin D1 Targets for Neuroprotection. Cellular and Molecular Neurobiology, 2023, 43, 1077-1096.	1.7	3
2	Immunoinflammatory role of apolipoprotein E4 in malnutrition and enteric infections and the increased risk for chronic diseases under adverse environments. Nutrition Reviews, 2022, 80, 1001-1012.	2.6	5
3	The Role of Ruthenium Compounds in Neurologic Diseases: A Minireview. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 47-53.	1.3	5
4	Synergistic neuroprotection by a PAF antagonist plus a docosanoid in experimental ischemic stroke: Dose-response and therapeutic window. Journal of Stroke and Cerebrovascular Diseases, 2022, 31, 106585.	0.7	1
5	Combined Therapy With Avastin, a PAF Receptor Antagonist and a Lipid Mediator Inhibited Glioblastoma Tumor Growth. Frontiers in Pharmacology, 2021, 12, 746470.	1.6	2
6	Multiprong control of glioblastoma multiforme invasiveness: blockade of pro-inflammatory signaling, anti-angiogenesis, and homeostasis restoration. Cancer and Metastasis Reviews, 2021, 40, 643-647.	2.7	7
7	DHA modulates MANF and TREM2 abundance, enhances neurogenesis, reduces infarct size, and improves neurological function after experimental ischemic stroke. CNS Neuroscience and Therapeutics, 2020, 26, 1155-1167.	1.9	19
8	Blocking pro-inflammatory platelet-activating factor receptors and activating cell survival pathways: A novel therapeutic strategy in experimental ischemic stroke. Brain Circulation, 2020, 6, 260.	0.7	13
9	TMOD-39. A PLATELET-ACTIVATING FACTOR RECEPTOR ANTAGONIST DELAYS GLIOBLASTOMA GROWTH AND INVASION IN A MOUSE MODEL. Neuro-Oncology, 2018, 20, vi277-vi277.	0.6	0
10	Docosanoids Promote Neurogenesis and Angiogenesis, Blood-Brain Barrier Integrity, Penumbra Protection, and Neurobehavioral Recovery After Experimental Ischemic Stroke. Molecular Neurobiology, 2018, 55, 7090-7106.	1.9	70
11	Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke. Cell Death and Differentiation, 2017, 24, 1091-1099.	5.0	44
12	Elovanoids are a novel class of homeostatic lipid mediators that protect neural cell integrity upon injury. Science Advances, 2017, 3, e1700735.	4.7	43
13	A novel therapeutic strategy for experimental stroke using docosahexaenoic acid complexed to human albumin. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D109.	0.6	1
14	Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism. Scientific Reports, 2016, 6, 30298.	1.6	36
15	Docosahexaenoic acid improves behavior and attenuates blood–brain barrier injury induced by focal cerebral ischemia in rats. Experimental & Translational Stroke Medicine, 2015, 7, 3.	3.2	41
16	Interferon-Stimulated Gene 15 Upregulation Precedes the Development of Blood–Brain Barrier Disruption and Cerebral Edema after Traumatic Brain Injury in Young Mice. Journal of Neurotrauma, 2015, 32, 1101-1108.	1.7	13
17	Docosahexaenoic acid complexed to albumin provides neuroprotection after experimental stroke in aged rats. Neurobiology of Disease, 2014, 62, 1-7.	2.1	42
18	Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. Journal of the Neurological Sciences, 2014, 338, 135-141.	0.3	57

Ludmila Belayev

#	Article	IF	CITATIONS
19	Acute Treatment with Docosahexaenoic Acid Complexed to Albumin Reduces Injury after a Permanent Focal Cerebral Ischemia in Rats. PLoS ONE, 2013, 8, e77237.	1.1	25
20	Docosahexaenoic Acid Signaling Modulates Cell Survival in Experimental Ischemic Stroke Penumbra and Initiates Long-Term Repair in Young and Aged Rats. PLoS ONE, 2012, 7, e46151.	1.1	71
21	Brain Ischemia and Reperfusion. , 2012, , 621-642.		2
22	Docosahexaenoic acid complexed to human albumin in experimental stroke: neuroprotective efficacy with a wide therapeutic window. Experimental & Translational Stroke Medicine, 2012, 4, 19.	3.2	25
23	Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke. Translational Stroke Research, 2012, 3, 154-163.	2.3	16
24	Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke. Experimental Neurology, 2012, 236, 122-130.	2.0	98
25	Overcoming Barriers to Translation from Experimental Stroke Models. , 2012, , 471-492.		7
26	Docosahexaenoic Acid Therapy of Experimental Ischemic Stroke. Translational Stroke Research, 2011, 2, 33-41.	2.3	142
27	Robust Docosahexaenoic Acid–Mediated Neuroprotection in a Rat Model of Transient, Focal Cerebral Ischemia. Stroke, 2009, 40, 3121-3126.	1.0	156
28	LAU-0901, a novel platelet-activating factor receptor antagonist, confers enduring neuroprotection in experimental focal cerebral ischemia in the rat. Brain Research, 2009, 1253, 184-190.	1.1	15
29	A novel neurotrophic therapeutic strategy for experimental stroke. Brain Research, 2009, 1280, 117-123.	1.1	38
30	LAU-0901, a novel platelet-activating factor antagonist, is highly neuroprotective in cerebral ischemia. Experimental Neurology, 2008, 214, 253-258.	2.0	36
31	Experimental intracerebral hematoma in the rat: Characterization by sequential magnetic resonance imaging, behavior, and histopathology. Effect of albumin therapy. Brain Research, 2007, 1157, 146-155.	1.1	60
32	Docosahexaenoic Acid Complexed to Albumin Elicits High-Grade Ischemic Neuroprotection. Stroke, 2005, 36, 118-123.	1.0	131
33	Albumin Treatment Reduces Neurological Deficit and Protects Blood–Brain Barrier Integrity After Acute Intracortical Hematoma in the Rat. Stroke, 2005, 36, 326-331.	1.0	77
34	Neuroprotective Effect of Darbepoetin Alfa, a Novel Recombinant Erythropoietic Protein, in Focal Cerebral Ischemia in Rats. Stroke, 2005, 36, 1065-1070.	1.0	126
35	Neuroprotective effect of STAZN in focal cerebral ischemia: A therapeutic-window study. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S41-S41.	2.4	0
36	Delayed post-ischemic albumin treatment neither improves nor worsens the outcome of transient focal cerebral ischemia in rats. Brain Research, 2004, 998, 243-246.	1.1	13

Ludmila Belayev

#	Article	IF	CITATIONS
37	Caffeinol confers cortical but not subcortical neuroprotection after transient focal cerebral ischemia in rats. Brain Research, 2004, 1008, 278-283.	1.1	25
38	Experimental Intracerebral Hemorrhage in the Mouse. Stroke, 2003, 34, 2221-2227.	1.0	108
39	Neuroprotective Effect of SolCD39, a Novel Platelet Aggregation Inhibitor, on Transient Middle Cerebral Artery Occlusion in Rats. Stroke, 2003, 34, 758-763.	1.0	77
40	Stilbazulenyl nitrone, a novel azulenyl nitrone antioxidant, improved neurological deficit and reduced contusion size after traumatic brain injury in rats. Journal of Neurosurgery, 2002, 96, 1077-1083.	0.9	19
41	Albumin Therapy of Transient Focal Cerebral Ischemia. Stroke, 2002, 33, 1077-1084.	1.0	189
42	Systemic fatty acid responses to transient focal cerebral ischemia: influence of neuroprotectant therapy with human albumin. Journal of Neurochemistry, 2002, 83, 515-524.	2.1	84
43	Neuroprotective effect of treatment with human albumin in permanent focal cerebral ischemia: histopathology and cortical perfusion studies. European Journal of Pharmacology, 2001, 428, 193-201.	1.7	75
44	Human Albumin Therapy of Acute Ischemic Stroke. Stroke, 2001, 32, 553-560.	1.0	338
45	Quantitative Analysis of Microvascular Alterations in Traumatic Brain Injury by Endothelial Barrier Antigen Immunohistochemistry. Journal of Neurotrauma, 2001, 18, 389-397.	1.7	51
46	Comparative neuroprotective efficacy of prolonged moderate intraischemic and postischemic hypothermia in focal cerebral ischemia. Journal of Neurosurgery, 2000, 92, 91-99.	0.9	133
47	Posttreatment With High-Dose Albumin Reduces Histopathological Damage and Improves Neurological Deficit Following Fluid Percussion Brain Injury in Rats. Journal of Neurotrauma, 1999, 16, 445-453.	1.7	102
48	Protein extravasation and cellular uptake after high-dose human-albumin treatment of transient focal cerebral ischemia in rats. Brain Research, 1999, 827, 237-242.	1.1	43
49	Neuroprotective effect of high-dose albumin therapy against global ischemic brain injury in rats. Brain Research, 1999, 845, 107-111.	1.1	78
50	The effect of high-dose albumin therapy on local cerebral perfusion after transient focal cerebral ischemia in rats. Brain Research, 1998, 804, 105-113.	1.1	86
51	Diffusion-Weighted Magnetic Resonance Imaging Confirms Marked Neuroprotective Efficacy of Albumin Therapy in Focal Cerebral Ischemia. Stroke, 1998, 29, 2587-2599.	1.0	157
52	Effect of delayed albumin hemodilution on infarction volume and brain edema after transient middle cerebral artery occlusion in rats. Journal of Neurosurgery, 1997, 87, 595-601.	0.9	130
53	Transient Middle Cerebral Artery Occlusion by Intraluminal Suture: I. Three-Dimensional Autoradiographic Image-Analysis of Local Cerebral Glucose Metabolism—Blood Flow Interrelationships during Ischemia and Early Recirculation. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 1266-1280.	2.4	113
54	Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Research, 1996, 739, 88-96.	1.1	489

#	Article	IF	CITATIONS
55	Depiction of Infarct Frequency Distribution by Computer-Assisted Image Mapping in Rat Brains With Middle Cerebral Artery Occlusion. Stroke, 1996, 27, 1112-1117.	1.0	29
56	Middle Cerebral Artery Occlusion in the Rat by Intraluminal Suture. Stroke, 1996, 27, 1616-1623.	1.0	697