Carmen Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1767023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catalysis, 2015, 5, 1353-1370.	5.5	865
2	Catalytic Coupling of Carbon Dioxide with Terpene Scaffolds: Access to Challenging Bioâ€Based Organic Carbonates. ChemSusChem, 2016, 9, 1304-1311.	3.6	102
3	Terpolymers Derived from Limonene Oxide and Carbon Dioxide: Access to Cross-Linked Polycarbonates with Improved Thermal Properties. Macromolecules, 2016, 49, 6285-6295.	2.2	101
4	Semiaromatic Polyesters Derived from Renewable Terpene Oxides with High Glass Transitions. Macromolecules, 2017, 50, 5337-5345.	2.2	101
5	Paramagnetic ionic liquid-coated SiO2@Fe3O4 nanoparticles—The next generation of magnetically recoverable nanocatalysts applied in the glycolysis of PET. Applied Catalysis B: Environmental, 2020, 260, 118110.	10.8	94
6	Highly Efficient Organocatalyzed Conversion of Oxiranes and CO ₂ into Organic Carbonates. ChemSusChem, 2015, 8, 3248-3254.	3.6	76
7	Easily accessible bifunctional Zn(salpyr) catalysts for the formation of organic carbonates. Catalysis Science and Technology, 2014, 4, 1615-1621.	2.1	67
8	Copolymerization of CO ₂ and Cyclohexene Oxide Mediated by Yb(salen)-Based Complexes. Macromolecules, 2015, 48, 8197-8207.	2.2	53
9	Copper–Carbene Intermediates in the Copperâ€Catalyzed Functionalization of OH Bonds. Chemistry - A European Journal, 2015, 21, 9769-9775.	1.7	48
10	Comparing conventional and microwave-assisted heating in PET degradation mediated by imidazolium-based halometallate complexes. New Journal of Chemistry, 2019, 43, 3476-3485.	1.4	45
11	Chelating Assistance of P–C and P–H Bond Activation at Palladium and Nickel: Straightforward Access to Diverse Pincer Complexes from a Diphosphine–Phosphine Oxide. Organometallics, 2013, 32, 1121-1128.	1.1	34
12	Copper(I)â~'Olefin Complexes: The Effect of the Trispyrazolylborate Ancillary Ligand in Structure and Reactivity. Organometallics, 2010, 29, 3481-3489.	1.1	32
13	Redoxâ€Active Hybrid Polyoxometalate‣tabilised Gold Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 14331-14335.	7.2	25
14	Rediscovering copper-based catalysts for intramolecular carbon–hydrogen bond functionalization by carbene insertion. Organic and Biomolecular Chemistry, 2009, 7, 4777.	1.5	24
15	Bifunctional Aminotriphenolate Complexes as One omponent Catalysts for the Ringâ€Opening Copolymerization of Cyclic Anhydrides and Epoxides. European Journal of Inorganic Chemistry, 2018, 2018, 1921-1927.	1.0	23
16	Hydrotris(3-mesitylpyrazolyl)borato-copper(i) alkyne complexes: synthesis, structural characterization and rationalization of their activities as alkyne cyclopropenation catalysts. Dalton Transactions, 2012, 41, 5319.	1.6	22
17	Comparing kinetic profiles between bifunctional and binary type of Zn(salen)-based catalysts for organic carbonate formation. Beilstein Journal of Organic Chemistry, 2014, 10, 1817-1825.	1.3	21
18	Combined Experimental/Computational Study of Iridium and Palladium Hydride PP(O)P Pincer Complexes. Organometallics, 2014, 33, 571-577.	1.1	19

CARMEN MARTIN

#	Article	IF	CITATIONS
19	Stable Nâ€Heterocyclic Carbene (NHC)–Palladium(0) Complexes as Active Catalysts for Olefin Cyclopropanation Reactions with Ethyl Diazoacetate. Chemistry - A European Journal, 2011, 17, 14885-14895.	1.7	17
20	((<i>R</i>)-(â~')-3-Hydroxyquinuclidium)[FeCl ₄]; a plastic hybrid compound with chirality, ferroelectricity and long range magnetic ordering. Journal of Materials Chemistry C, 2021, 9, 4453-4465.	2.7	16
21	Synthesis and Structural Features of Co(II) and Co(III) Complexes Supported by Aminotrisphenolate Ligand Scaffolds. Inorganic Chemistry, 2014, 53, 11675-11681.	1.9	13
22	An Effective Dual Copper―and Sulfide atalytic System for the Epoxidation of Aldehydes with Phenyldiazomethane. Advanced Synthesis and Catalysis, 2013, 355, 2942-2951.	2.1	12
23	Physical and Electrochemical Modulation of Polyoxometalate Ionic Liquids via Organic Functionalization. European Journal of Inorganic Chemistry, 2019, 2019, 456-460.	1.0	12
24	Blurring the boundary between homogenous and heterogeneous catalysis using palladium nanoclusters with dynamic surfaces. Nature Communications, 2021, 12, 4965.	5.8	12
25	Salt and Solvent Effects on the Kinetics and Thermodynamics of the Inclusion of the Ruthenium Complex [Ru(NH3)5(4,4â€~-bpy)]2+in β-Cyclodextrin. Journal of Physical Chemistry B, 2006, 110, 12959-12963.	1.2	10
26	Coordination of a diphosphine–phosphine oxide to Au, Ag and Rh: when polyfunctionality rhymes with versatility. Dalton Transactions, 2012, 41, 14274.	1.6	7
27	Redoxâ€Active Hybrid Polyoxometalateâ€ S tabilised Gold Nanoparticles. Angewandte Chemie, 2020, 132, 14437-14441.	1.6	6
28	Formation of a Rotaxane from the End-Capping Process of a Pseudorotaxane. Effects of the Solvent. Journal of Physical Chemistry B, 2008, 112, 11610-11615.	1.2	4
29	Synthesis of chiral iron-based ionic liquids: modelling stable hybrid materials. New Journal of Chemistry, 2020, 44, 6375-6383.	1.4	3
30	Chapter 13. Iron Complex-based Catalysts. RSC Green Chemistry, 2015, , 373-406.	0.0	1