
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1766984/publications.pdf Version: 2024-02-01

IAN M FDANKS

#	Article	IF	CITATIONS
1	Learning to stand with unexpected sensorimotor delays. ELife, 2021, 10, .	2.8	12
2	Influence of kinesthetic motor imagery and effector specificity on the long-latency stretch response. Journal of Neurophysiology, 2019, 122, 2187-2200.	0.9	4
3	The effect of response complexity on simple reaction time occurs even with a highly predictable imperative stimulus. Neuroscience Letters, 2019, 704, 62-66.	1.0	7
4	Mechanical perturbations can elicit triggered reactions in the absence of a startle response. Experimental Brain Research, 2018, 236, 365-379.	0.7	5
5	Relevance-dependent modulation of tactile suppression during active, passive and pantomime reach-to-grasp movements. Behavioural Brain Research, 2018, 339, 93-105.	1.2	19
6	Preparation of timing structure involves two independent sub-processes. Psychological Research, 2018, 82, 981-996.	1.0	10
7	Response Selection Contributes to the Preparation Cost for Bimanual Asymmetric Movements. Journal of Motor Behavior, 2018, 50, 392-397.	0.5	1
8	Investigation of timing preparation during response initiation and execution using a startling acoustic stimulus. Experimental Brain Research, 2017, 235, 15-27.	0.7	4
9	Perturbation Predictability Can Influence the Long-Latency Stretch Response. PLoS ONE, 2016, 11, e0163854.	1.1	12
10	An examination of the startle response during upper limb stretch perturbations. Neuroscience, 2016, 337, 163-176.	1.1	6
11	Independent planning of timing and sequencing for complex movements Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 1158-1172.	0.7	8
12	Responses to startling acoustic stimuli indicate that movement-related activation is constant prior to action: aÂreplication with an alternate interpretation. Physiological Reports, 2015, 3, e12300.	0.7	27
13	Responses to startling acoustic stimuli indicate that movement-related activation does not build up in anticipation of action. Journal of Neurophysiology, 2015, 113, 3453-3454.	0.9	2
14	Voluntary reaction time and long-latency reflex modulation. Journal of Neurophysiology, 2015, 114, 3386-3399.	0.9	29
15	Facilitation and interference during the preparation of bimanual movements: contributions from starting locations, movement amplitudes, and target locations. Psychological Research, 2015, 79, 978-988.	1.0	6
16	A startling acoustic stimulus interferes with upcoming motor preparation: Evidence for a startle refractory period. Acta Psychologica, 2015, 158, 36-42.	0.7	8
17	Unified nature of bimanual movements revealed by separating the preparation of each arm. Experimental Brain Research, 2015, 233, 1931-1944.	0.7	5
18	Control of response timing occurs during the simple reaction time interval but on-line for choice reaction time Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 2005-2021.	0.7	23

#	Article	IF	CITATIONS
19	Comparing movement preparation of unimanual, bimanual symmetric, and bimanual asymmetric movements. Experimental Brain Research, 2014, 232, 947-955.	0.7	13
20	Unconscious and out of control: Subliminal priming is insensitive to observer expectations. Consciousness and Cognition, 2013, 22, 716-728.	0.8	9
21	Using a startling acoustic stimulus to investigate underlying mechanisms of bradykinesia in Parkinson's disease. Neuropsychologia, 2013, 51, 392-399.	0.7	26
22	Evidence for a response preparation bottleneck during dual-task performance: Effect of a startling acoustic stimulus on the psychological refractory period. Acta Psychologica, 2013, 144, 481-487.	0.7	15
23	Startle reveals independent preparation and initiation of triphasic EMG burst components in targeted ballistic movements. Journal of Neurophysiology, 2013, 110, 2129-2139.	0.9	10
24	Subcortical motor circuit excitability during simple and choice reaction time Behavioral Neuroscience, 2012, 126, 499-503.	0.6	18
25	The effects of prepulse inhibition timing on the startle reflex and reaction time. Neuroscience Letters, 2012, 513, 243-247.	1.0	29
26	Investigation of stimulus–response compatibility using a startling acoustic stimulus. Brain and Cognition, 2012, 78, 1-6.	0.8	6
27	The adaptability of self-action perception and movement control when the limb is passively versus actively moved. Consciousness and Cognition, 2012, 21, 4-17.	0.8	18
28	Preparation for voluntary movement in healthy and clinical populations: Evidence from startle. Clinical Neurophysiology, 2012, 123, 21-33.	0.7	98
29	Startle decreases reaction time to active inhibition. Experimental Brain Research, 2012, 217, 7-14.	0.7	10
30	Motor preparation of spatially and temporally defined movements: evidence from startle. Journal of Neurophysiology, 2011, 106, 885-894.	0.9	13
31	Reach adaptation to online target error. Experimental Brain Research, 2011, 209, 171-180.	0.7	6
32	Bimanual reaches with symbolic cues exhibit errors in target selection. Experimental Brain Research, 2011, 212, 541-554.	0.7	6
33	Default motor preparation under conditions of response uncertainty. Experimental Brain Research, 2011, 215, 235-245.	0.7	14
34	Considerations for the use of a startling acoustic stimulus in studies of motor preparation in humans. Neuroscience and Biobehavioral Reviews, 2011, 35, 366-376.	2.9	115
35	Motor preparation and the effects of practice: Evidence from startle Behavioral Neuroscience, 2011, 125, 226-240.	0.6	41
36	Reach adaptation to explicit vs. implicit target error. Experimental Brain Research, 2010, 203, 367-380.	0.7	14

#	Article	IF	CITATIONS
37	Implicit motor learning from target error during explicit reach control. Experimental Brain Research, 2010, 206, 99-104.	0.7	10
38	Movement duration does not affect automatic online control. Human Movement Science, 2010, 29, 871-881.	0.6	13
39	Feedback Effects on Learning a Novel Bimanual Coordination Pattern: Support for the Guidance Hypothesis. Journal of Motor Behavior, 2009, 41, 45-54.	0.5	43
40	Anchoring in a novel bimanual coordination pattern. Human Movement Science, 2009, 28, 28-47.	0.6	10
41	Response preparation changes during practice of an asynchronous bimanual movement. Experimental Brain Research, 2009, 195, 383-392.	0.7	24
42	The hand's automatic pilot can update visual information while the eye is in motion. Experimental Brain Research, 2009, 195, 445-454.	0.7	13
43	Precues enable multiple response preprogramming: Evidence from startle. Psychophysiology, 2009, 46, 241-251.	1.2	21
44	Cognitive constraint on the â€~automatic pilot' for the hand: Movement intention influences the hand's susceptibility to involuntary online corrections. Consciousness and Cognition, 2009, 18, 646-652.	0.8	14
45	Differential Effects of Startle on Reaction Time for Finger and Arm Movements. Journal of Neurophysiology, 2009, 101, 306-314.	0.9	64
46	Response preparation changes following practice of an asymmetrical bimanual movement. Experimental Brain Research, 2008, 190, 239-249.	0.7	19
47	Motor preparation in an anticipation-timing task. Experimental Brain Research, 2008, 190, 453-461.	0.7	22
48	The influence of advance information on the response complexity effect in manual aiming movements. Acta Psychologica, 2008, 127, 154-162.	0.7	26
49	Startle reveals an absence of advance motor programming in a Go/No-go task. Neuroscience Letters, 2008, 434, 61-65.	1.0	33
50	System approach to games and competitive playing: Reply to Lebed (2006). European Journal of Sport Science, 2007, 7, 47-53.	1.4	12
51	Predictability influences stopping and response control Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 149-162.	0.7	14
52	Perceptual processing time differences owing to visual field asymmetries. NeuroReport, 2007, 18, 1067-1070.	0.6	8
53	On-line control of pointing is modified by unseen visual shapes. Consciousness and Cognition, 2007, 16, 265-275.	0.8	35
54	Startle produces early response latencies that are distinct from stimulus intensity effects. Experimental Brain Research, 2007, 176, 199-205.	0.7	118

#	Article	IF	CITATIONS
55	Sensorimotor adaptation in response to proprioceptive bias. Experimental Brain Research, 2007, 177, 147-156.	0.7	15
56	Dual-target interference for the â€~automatic pilot' in the dorsal stream. Experimental Brain Research, 2007, 181, 297-305.	0.7	15
57	Reprogramming of Interceptive Actions: Time Course of Temporal Corrections for Unexpected Target Velocity Change. Journal of Motor Behavior, 2006, 38, 467-477.	0.5	18
58	Enhancement of motor rehabilitation through the use of information technologies. Clinical Biomechanics, 2006, 21, 8-20.	0.5	35
59	Programming strategies for rapid aiming movements under simple and choice reaction time conditions. Quarterly Journal of Experimental Psychology, 2006, 59, 524-542.	0.6	36
60	Updating of an internal model without proprioception: a deafferentation study. NeuroReport, 2006, 17, 1421-1425.	0.6	75
61	Measuring online volitional response control with a continuous tracking task. Behavior Research Methods, 2006, 38, 638-647.	2.3	17
62	No automatic pilot for visually guided aiming based on colour. Experimental Brain Research, 2006, 171, 174-183.	0.7	46
63	Temporal uncertainty does not affect response latencies of movements produced during startle reactions. Experimental Brain Research, 2006, 171, 278-282.	0.7	25
64	Use of visual information in the correction of interceptive actions. Experimental Brain Research, 2006, 175, 758-763.	0.7	17
65	Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience and Biobehavioral Reviews, 2006, 30, 1106-1121.	2.9	144
66	Determinants of Offline Processing of Visual Information for the Control of Reaching Movements. Journal of Motor Behavior, 2006, 38, 331-338.	0.5	12
67	Anchoring Strategies for Learning a Bimanual Coordination Pattern. Journal of Motor Behavior, 2006, 38, 101-117.	0.5	16
68	Compatibility Effects in Stopping and Response Initiation in a Continuous Tracking Task. Quarterly Journal of Experimental Psychology, 2006, 59, 2148-2161.	0.6	10
69	Evaluation of Scanning Methodology in Bimanual Coordination. Motor Control, 2005, 9, 310-329.	0.3	8
70	ls proprioception calibrated during visually guided movements?. Experimental Brain Research, 2005, 167, 292-296.	0.7	50
71	Analysis of passing sequences, shots and goals in soccer. Journal of Sports Sciences, 2005, 23, 509-514.	1.0	333
72	Prepared Movements Are Elicited Early by Startle. Journal of Motor Behavior, 2004, 36, 253-264.	0.5	159

#	Article	IF	CITATIONS
73	Inhibiting prepared and ongoing responses: Is there more than one kind of stopping?. Psychonomic Bulletin and Review, 2004, 11, 1034-1040.	1.4	36
74	The utilization of visual feedback from peripheral and central vision in the control of direction. Experimental Brain Research, 2004, 158, 241-51.	0.7	28
75	Can prepared responses be stored subcortically?. Experimental Brain Research, 2004, 159, 301-309.	0.7	153
76	Contextual Interference: Single Task versus Multi-task Learning. Motor Control, 2004, 8, 213-233.	0.3	51
77	Startle response is dishabituated during a reaction time task. Experimental Brain Research, 2003, 152, 510-518.	0.7	60
78	Relative contributions of visual and vestibular information on the trajectory of human gait. Experimental Brain Research, 2003, 153, 113-117.	0.7	38
79	Online versus offline processing of visual feedback in the control of movement amplitude. Acta Psychologica, 2003, 113, 83-97.	0.7	113
80	The Role of Video in Facilitating Perception and Action of a Novel Coordination Movement. Journal of Motor Behavior, 2003, 35, 247-260.	0.5	75
81	Online Versus Offline Processing of Visual Feedback in the Production of Component Submovements. Journal of Motor Behavior, 2003, 35, 285-295.	0.5	53
82	Stopping and Restarting an Unfolding Action at Various Times. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2003, 56, 1-20.	2.3	10
83	The Utilization of Visual Feedback in the Control of Movement Direction: Evidence from a Video Aiming Task. Motor Control, 2003, 7, 290-303.	0.3	18
84	On the Nature of Stopping an Earlier Intended Voluntary Action. Motor Control, 2003, 7, 155-198.	0.3	12
85	Modelling coaching practice: the role of instruction and demonstration. Journal of Sports Sciences, 2002, 20, 793-811.	1.0	155
86	Evidence-based practice and the coaching process. International Journal of Performance Analysis in Sport, 2002, 2, 1-5.	0.5	8
87	Advances in the application of information technology to sport performance. Journal of Sports Sciences, 2002, 20, 755-769.	1.0	218
88	Sport competition as a dynamical self-organizing system. Journal of Sports Sciences, 2002, 20, 771-781.	1.0	322
89	Learning as a function of coordination bias: building upon pre-practice behaviours. Human Movement Science, 2002, 21, 231-258.	0.6	36
90	Spatially precise bilateral arm movements are controlled by the contralateral hemisphere. Experimental Brain Research, 2002, 142, 292-296.	0.7	11

#	Article	IF	CITATIONS
91	Conflicting sources of spatial information in a distance-reproduction task. Experimental Brain Research, 2002, 145, 231-238.	0.7	3
92	Learning a Coordination Skill: Interactive Effects of Instruction and Feedback. Research Quarterly for Exercise and Sport, 2001, 72, 132-142.	0.8	54
93	Visual awareness and the on-line modification of action Canadian Journal of Experimental Psychology, 2001, 55, 104-110.	0.7	56
94	Against a Final Ballistic Process in the Control of Voluntary Action: Evidence Using the Hoffmann Reflex. Motor Control, 2000, 4, 469-485.	0.3	18
95	Attention focusing instructions and coordination bias: Implications for learning a novel bimanual task. Human Movement Science, 2000, 19, 843-867.	0.6	42
96	The Effect of Practice on Component Submovements is Dependent on the Availability of Visual Feedback. Journal of Motor Behavior, 2000, 32, 227-240.	0.5	59
97	On the presence and absence of behavioural traits in sport: An example from championship squash match-play. Journal of Sports Sciences, 1999, 17, 297-311.	1.0	67
98	Dual-task interference as an indicator of on-line programming in simple movement sequences Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 1302-1315.	0.7	16
99	A Note on the Response Complexity Effect in Eye Movements. Research Quarterly for Exercise and Sport, 1998, 69, 64-69.	0.8	2
100	The Effect of Practice on the Control of Rapid Aiming Movements: Evidence for an Interdependency between Programming and Feedback Processing. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1998, 51, 425-444.	2.3	70
101	Response preparation and control of movement sequences Canadian Journal of Experimental Psychology, 1998, 52, 93-102.	0.7	12
102	A horse race between independent processes: Evidence for a phantom point of no return in the preparation of a speeded motor response Journal of Experimental Psychology: Human Perception and Performance, 1997, 23, 1533-1542.	0.7	54
103	The control of rapid aiming movements: Variations in response accuracy and complexity. Acta Psychologica, 1997, 97, 289-305.	0.7	11
104	On-line programming of simple movement sequences. Human Movement Science, 1997, 16, 461-483.	0.6	22
105	In search of invariant athletic behaviour in sport: An example from championship squash matchâ€play. Journal of Sports Sciences, 1996, 14, 445-456.	1.0	47
106	An optical encoder and XY oscilloscope interface for the IBM PC. Behavior Research Methods, 1996, 28, 404-410.	1.3	3
107	Development, Application, and Limitation of a Stochastic Markov Model in Explaining Championship Squash Performance. Research Quarterly for Exercise and Sport, 1996, 67, 406-415.	0.8	30
108	Analysis and modification of verbal coaching behaviour: The usefulness of a dataâ€driven intervention strategy. Journal of Sports Sciences, 1996, 14, 523-543.	1.0	37

#	Article	IF	CITATIONS
109	Modeling competitive squash performance from quantitative analysis. Human Performance, 1995, 8, 113-129.	1.4	21
110	Dynamic patterns of movement of squash players of different standards in winning and losing rallies. Ergonomics, 1994, 37, 23-29.	1.1	20
111	A stochastic approach to predicting competition squash matchâ€play. Journal of Sports Sciences, 1994, 12, 573-584.	1.0	76
112	A note on the perceptual grouping of rhythmic sequences. Human Movement Science, 1993, 12, 235-246.	0.6	0
113	The effects of targeting on the ground reaction forces during level walking. Human Movement Science, 1993, 12, 327-337.	0.6	20
114	Task Specificity and the Role of vision While Learning to Track. Human Performance, 1993, 6, 101-114.	1.4	6
115	The Effects of Experience on the Detection and Location of Performance Differences in a Gymnastic Technique. Research Quarterly for Exercise and Sport, 1993, 64, 227-231.	0.8	15
116	Perceptual organization of simple rhythmic sequences. Bulletin of the Psychonomic Society, 1992, 30, 319-322.	0.2	1
117	The preparation and initiation of simple rhythmical patterns. Human Movement Science, 1991, 10, 629-651.	0.6	5
118	Learning the invariants of a perceptual motor skill Canadian Journal of Psychology, 1991, 45, 303-320.	0.8	9
119	Preprogramming vs. on-line control in simple movement sequences. Acta Psychologica, 1991, 77, 1-19.	0.7	79
120	Training coaches to observe and remember. Journal of Sports Sciences, 1991, 9, 285-297.	1.0	45
121	The effects of demanding temporal accuracy on the programming of simple tapping sequences. Acta Psychologica, 1990, 74, 1-14.	0.7	19
122	Learning to organize the frequency components of a perceptual motor skill. Human Movement Science, 1990, 9, 291-323.	0.6	8
123	A comparison of directly recorded and derived acceleration data in movement control research. Human Movement Science, 1990, 9, 573-582.	0.6	16
124	Computer controlled video: An inexpensive IBM based system. Computers and Education, 1989, 13, 33-44.	5.1	3
125	Response preparation and latency in patterns of tapping movements. Human Movement Science, 1989, 8, 123-139.	0.6	40
126	A method for investigating the sequential ordering of simple movement patterns: An IBM-based application using the Tecmar Labmaster. Behavior Research Methods, 1988, 20, 298-306.	1.3	4

#	Article	IF	CITATIONS
127	The use of computer interactive video in sport analysis. Ergonomics, 1988, 31, 1593-1603.	1.1	17
128	The Development of a Computerized Coaching Analysis System for Recording Behavior in Sporting Environments. Journal of Teaching in Physical Education, 1988, 8, 23-32.	0.9	15
129	A systematic approach to analysing sports performance. Journal of Sports Sciences, 1986, 4, 49-59.	1.0	47
130	The Planning, Organization and Execution of Serially Ordered Movement Patterns: A Coding Perspective. Advances in Psychology, 1985, 27, 175-191.	0.1	1
131	The kinematics, movement phasing and timing of a skilled action in response to varying conditions of uncertainty. Human Movement Science, 1985, 4, 91-105.	0.6	38
132	Context effects in movement recognition. Human Movement Science, 1985, 4, 283-295.	0.6	1
133	Consistent Reproduction of Movement Sequences during Acquisition of a Pursuit Tracking Task. Perceptual and Motor Skills, 1984, 58, 699-709.	0.6	3
134	Human Factors in Sports Systems: An Empirical Investigation of Events in Team Games. Proceedings of the Human Factors Society Annual Meeting, 1983, 27, 383-386.	0.1	7
135	The generation of movement patterns during the acquisition of a pursuit tracking task. Human Movement Science, 1982, 1, 251-272.	0.6	17
136	Consistency and error in motor performance. Human Movement Science, 1982, 1, 109-123.	0.6	16