Longxing Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1766894/publications.pdf

Version: 2024-02-01

51	2,630	23	50
papers	citations	h-index	g-index
52	52	52	2539
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection. Journal of Materials Science and Technology, 2022, 105, 259-265.	10.7	230
2	An all-inorganic CsPbBr ₃ /GaN hetero-structure for a near UV to green band photodetector. Journal of Materials Chemistry C, 2022, 10, 1349-1356.	5 . 5	14
3	Schottky-type GaN-based UV photodetector with atomic-layer-deposited TiN thin film as electrodes. Optics Letters, 2022, 47, 429.	3.3	7
4	A vertical CsPbBr ₃ /ZnO heterojunction for photo-sensing lights from UV to green band. Optics Express, 2022, 30, 23330.	3.4	15
5	Ohmic-Schottky conversion of ZnO/metal contact modulated by a plasma surface treatment method. Results in Materials, 2022, 15, 100290.	1.8	1
6	Scalable manufacture of vertical <scp>pâ€GaN</scp> / <scp>nâ€SnO₂</scp> heterostructure for selfâ€powered ultraviolet photodetector, solar cell and dualâ€color light emitting diode. InformaÄnÃ-Materiály, 2021, 3, 598-610.	17.3	32
7	A direct solvent-free conversion approach to prepare mixed-metal metal–organic frameworks from doped metal oxides. Chemical Communications, 2021, 57, 3587-3590.	4.1	8
8	Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors. Journal of Semiconductors, 2021, 42, 052301.	3.7	29
9	Solid-State Synthesis of Defect-Rich Zr-UiO-66 Metal–Organic Framework Nanoparticles for the Catalytic Ring Opening of Epoxides with Alcohols. ACS Applied Nano Materials, 2021, 4, 9752-9759.	5.0	8
10	Alloying induced disorder and localized excitonic states in ternary BexZn1â^'xO thin films. Journal of Alloys and Compounds, 2021, 874, 159867.	5.5	4
11	Selective detection of trimethylamine utilizing nanosheets assembled hierarchical WO2.9 nanostructure. Journal of Environmental Chemical Engineering, 2021, 9, 106493.	6.7	5
12	Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Materials, 2021, 43, 258-265.	18.0	25
13	A Direct Mechanochemical Conversion of Pt Doped MOF-74 from Doped Metal Oxides for CO Oxidation. Materials Today Nano, 2021, 17, 100158.	4.6	9
14	An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga ₂ O ₃ /polyaniline heterojunction. Nanoscale, 2020, 12, 1406-1413.	5.6	76
15	Simultaneous Enhancement of Interfacial Stability and Kinetics of Single-Crystal LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ through Optimized Surface Coating and Doping. Nano Letters, 2020, 20, 8832-8840.	9.1	86
16	Low temperature atomic layer deposition of GaOxNy thin film on III-GaN:Mg for UV photodetector. Applied Physics Letters, 2020, 117 , .	3.3	8
17	High Responsivity and High Rejection Ratio of Self-Powered Solar-Blind Ultraviolet Photodetector Based on PEDOT:PSS/β-Ga ₂ O ₃ Organic/Inorganic p–n Junction. Journal of Physical Chemistry Letters, 2019, 10, 6850-6856.	4.6	113
18	Postannealed Structural Relaxation and Phase Evolution of Quaternary Alloy BeMgZnO. ACS Applied Electronic Materials, 2019, 1, 2061-2068.	4.3	3

#	Article	IF	Citations
19	Electrically driven plasmon-exciton coupled random lasing in ZnO metal-semiconductor-metal devices. Applied Surface Science, 2018, 439, 525-532.	6.1	10
20	Solutionâ€Processed Transparent Selfâ€Powered pâ€CuSâ€ZnS/nâ€ZnO UV Photodiode. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700381.	2.4	54
21	A Realâ€Time Wearable UVâ€Radiation Monitor based on a Highâ€Performance pâ€CuZnS/nâ€TiO ₂ Photodetector. Advanced Materials, 2018, 30, e1803165.	21.0	300
22	Selfâ€Powered nâ€SnO ₂ /pâ€CuZnS Core–Shell Microwire UV Photodetector with Optimized Performance. Advanced Optical Materials, 2018, 6, 1800213.	7.3	83
23	Back-to-back symmetric Schottky type UVA photodetector based on ternary alloy BeZnO. Journal of Materials Chemistry C, 2018, 6, 7776-7782.	5 . 5	21
24	Oneâ€Step Hydrothermal Synthesis of ZnS Quantum Dotsâ€Reduced Graphene Oxide Composites with Enhanced Photocatalytic Activity. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800082.	1.8	13
25	UV Photodetectors Based on BiOCl Nanosheet Arrays: The Effects of Morphologies and Electrode Configurations. Small, 2018, 14, e1801611.	10.0	38
26	Resonant Raman scattering study of BexZn1â^'xO thin films grown on sapphire by molecular beam epitaxy. International Journal of Modern Physics B, 2017, 31, 1744067.	2.0	2
27	An Ultrahigh Responsivity (9.7 mA W ^{â°'1}) Selfâ€Powered Solarâ€Blind Photodetector Based on Individual ZnO–Ga ₂ O ₃ Heterostructures. Advanced Functional Materials, 2017, 27, 1700264.	14.9	616
28	Highly Desirable Photodetectors Derived from Versatile Plasmonic Nanostructures. Advanced Functional Materials, 2017, 27, 1704181.	14.9	54
29	Novel BeZnO Based Selfâ€Powered Dualâ€Color UV Photodetector Realized via a Oneâ€Step Fabrication Method. Laser and Photonics Reviews, 2017, 11, 1700222.	8.7	53
30	Selfâ€Powered Ultraviolet Photodetectors Driven by Builtâ€In Electric Field. Small, 2017, 13, 1701687.	10.0	245
31	Electrically driven deep ultraviolet MgZnO lasers at room temperature. Scientific Reports, 2017, 7, 2677.	3.3	30
32	Realization of deep ultraviolet random lasing in MgZnO metal-semiconductor-metal devices. , 2016, , .		0
33	Enhanced Exciton Binding Energy of ZnO by Long-Distance Perturbation of Doped Be Atoms. Journal of Physical Chemistry Letters, 2016, 7, 1484-1489.	4.6	25
34	Comparative study on beryllium and magnesium as a co-doping element for ZnO:N. Chinese Physics B, 2016, 25, 066106.	1.4	3
35	Controlled growth of epitaxial wurtzite BeMgZnO alloy films and two microscopic origins of Be–Mg mutual stabilizing mechanism. Journal of Alloys and Compounds, 2015, 631, 355-359.	5.5	11
36	The role of Be incorporation in the modulation of the N doping ZnO. Journal of Alloys and Compounds, 2015, 622, 719-724.	5.5	16

#	Article	IF	CITATIONS
37	Understanding the origin of phase segregation of nano-crystalline in a BexZn1â^2xO random alloy: a novel phase of Be1/3Zn2/3O. Nanoscale, 2015, 7, 9852-9858.	5.6	7
38	Phase evolution, bandgap engineering and p-type conduction in undoped/N-doped Be Zn1â^'O alloy epitaxial films. Journal of Alloys and Compounds, 2014, 616, 505-509.	5. 5	15
39	Grain boundary barrier modification due to coupling effect of crystal polar field and water molecular dipole in ZnO-based structures. Applied Physics Letters, 2014, 104, 242114.	3.3	5
40	High-performance zero-bias ultraviolet photodetector based on $p-GaN/n-ZnO heterojunction. Applied Physics Letters, 2014, 105, .$	3.3	82
41	The wurtzite–rocksalt phase transition for a BexMgyZn1â^'xâ^'yO alloy: Be content vs Mg content. Journal of Alloys and Compounds, 2014, 608, 197-201.	5.5	6
42	Well-controlled wet etching of ZnO films using hydrogen peroxide solution. Applied Surface Science, 2014, 292, 34-38.	6.1	17
43	Wide Range Bandgap Modulation Based on ZnO-based Alloys and Fabrication of Solar Blind UV Detectors with High Rejection Ratio. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14152-14158.	8.0	55
44	The modulation of grain boundary barrier in ZnMgO/ZnO heterostructure by surface polar liquid. Scientific Reports, 2014, 4, 4185.	3.3	12
45	Suppression of oxygen vacancies in Be alloyed ZnO. Journal of Alloys and Compounds, 2013, 577, 179-182.	5.5	15
46	Structure and optical properties of ternary alloy BeZnO and quaternary alloy BeMgZnO films growth by molecular beam epitaxy. Applied Surface Science, 2013, 274, 341-344.	6.1	35
47	Solar-blind wurtzite MgZnO alloy films stabilized by Be doping. Journal Physics D: Applied Physics, 2013, 46, 245103.	2.8	31
48	Formation behavior of Be $<$ i $>xi>Zn1â^{\circ}>xi>O alloys grown by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 2013, 102, .$	3.3	31
49	Temperature-dependent structural relaxation of BeZnO alloys. Applied Physics Letters, 2013, 103, .	3.3	27
50	Stabilization of p-type dopant nitrogen in BeZnO ternary alloy epitaxial thin films. Journal Physics D: Applied Physics, 2012, 45, 455101.	2.8	19
51	ZnO film with ultra-low background electron concentration grown by plasma-assisted MBE using Mg film as the buffer layer. Materials Research Bulletin, 2012, 47, 2673-2675.	5.2	16