Ke-Fu Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1766430/publications.pdf

Version: 2024-02-01

	394286	414303
1,128	19	32
citations	h-index	g-index
53	53	1074
docs citations	times ranked	citing authors
	citations 53	1,128 19 citations h-index 53 53

#	Article	IF	CITATIONS
1	NiFe Layered Double Hydroxides Grown on a Corrosion ell Cathode for Oxygen Evolution Electrocatalysis. Advanced Energy Materials, 2022, 12, 2102372.	10.2	51
2	NiFe Layered Double Hydroxides Grown on a Corrosion ell Cathode for Oxygen Evolution Electrocatalysis (Adv. Energy Mater. 2/2022). Advanced Energy Materials, 2022, 12, .	10.2	6
3	Designing High Entropy Bulk Metallic Glass (HE-BMG) by Similar Element Substitution/Addition. Materials, 2022, 15, 1669.	1.3	5
4	Microstructure and mechanical properties of lightweight AlCrTiV0.5Cux high-entropy alloys. Rare Metals, 2022, 41, 2016-2020.	3.6	13
5	Microstructure and magnetic properties of novel powder cores composed of iron-based amorphous alloy and PTFE. Journal of Materials Science, 2022, 57, 8154-8166.	1.7	16
6	High-entropy induced a glass-to-glass transition in a metallic glass. Nature Communications, 2022, 13, 2183.	5.8	34
7	Intrinsic fast kinetics on the degradation of azo dye by iron in alkaline condition. Chemical Engineering Journal Advances, 2022, , 100321.	2.4	0
8	Theoretical and experimental study of metallic glass die-imprinting for manufacturing large-size micro/nano structures. Journal of Materials Processing Technology, 2022, 307, 117699.	3.1	4
9	Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. Chemosphere, 2021, 264, 128392.	4.2	14
10	Microstructure, Hardness, and Tensile Properties of Vacuum Carburizing Gear Steel. Metals, 2021, 11, 300.	1.0	8
11	Widely tunable optical properties via oxygen manipulation in an amorphous alloy. Science China Materials, 2021, 64, 2305-2312.	3.5	4
12	Characterization of the microstructure and hardness of case-carburized gear steel. Micron, 2021, 144, 103028.	1.1	19
13	Cheap, fast and durable degradation of azo dye wastewater by zero-valent iron structural composites. Journal of Environmental Chemical Engineering, 2021, 9, 106314.	3.3	7
14	Functional 3D nanoporous Fe-based alloy from metallic glass for high-efficiency water splitting and wastewater treatment. Journal of Non-Crystalline Solids, 2021, 571, 121070.	1.5	9
15	Stress-induced activation of the commercial Fe-based metallic glass ribbons for azo dye degradation. Journal of Non-Crystalline Solids, 2021, 572, 121117.	1.5	3
16	Effect of TiC Addition on the High-Temperature Hardness and the Carbide Stability in Alo.2CoCrFeNi1.5Ti High-Entropy Alloy. Russian Journal of Non-Ferrous Metals, 2021, 62, 708-715.	0.2	0
17	Excellent long-term reactivity of inhomogeneous nanoscale Fe-based metallic glass in wastewater purification. Science China Materials, 2020, 63, 453-466.	3.5	22
18	Formation and Properties of Amorphous Multi-Component (CrFeMoNbZr)Ox Thin Films. Metals, 2020, 10, 599.	1.0	3

#	Article	IF	Citations
19	A high-strength Co–Fe–Ta–B metallic-glass phase enabled tensile plasticity in Co–Fe–Ta–B–O oxide glass matrix nanocomposites. Applied Physics Letters, 2020, 116, .	² 1.5	7
20	Porous composite architecture bestows Fe-based glassy alloy with high and ultra-durable degradation activity in decomposing azo dye. Journal of Hazardous Materials, 2020, 388, 122043.	6.5	20
21	Understanding the Fracture Behaviors of Metallic Glasses—An Overview. Applied Sciences (Switzerland), 2019, 9, 4277.	1.3	11
22	Anomalous low-temperature transport property of oxygen containing high-entropy Ti-Zr-Hf-Cu-Ni metallic glass thin films. Science China Materials, 2019, 62, 907-912.	3.5	4
23	Electrochemical corrosion resistance of the amorphous and crystalline Pdâ€based alloys in simulated seawater. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1509-1515.	0.8	2
24	Structures and corrosion properties of the AlCrFeNiMo _{0.5} Ti _{<i>x</i>} high entropy alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 641-647.	0.8	28
25	Fe-based multi-phase nanocrystalline ribbons with hierarchically flowerlike structured metal oxides after modified by Orange II for CrVI absorption. Journal of Iron and Steel Research International, 2018, 25, 608-613.	1.4	4
26	Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition. Journal of Materials Chemistry A, 2017, 5, 14230-14240.	5.2	74
27	Oxide-derived nanostructured metallic-glass electrodes for efficient electrochemical hydrogen generation. RSC Advances, 2017, 7, 27058-27064.	1.7	17
28	One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity. Scientific Reports, 2017, 7, 10249.	1.6	29
29	Review on the Research and Development of Ti-Based Bulk Metallic Glasses. Metals, 2016, 6, 264.	1.0	74
30	Centimeterâ€Sized Quaternary Tiâ€Based Bulk Metallic Glasses with High Ti Content of 50 at%. Advanced Engineering Materials, 2016, 18, 231-235.	1.6	10
31	A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nature Communications, 2016, 7, 13497.	5.8	71
32	Effects of alloying elements on crystallization kinetics of Ti–Zr–Be bulk metallic glass. Journal of Materials Science, 2016, 51, 5321-5329.	1.7	21
33	Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti ₂₀ Zr ₂₀ high entropy bulk metallic glass. Journal of Materials Research, 2015, 30, 2772-2782.	1.2	33
34	Cu-alloying effect on crystallization kinetics of Ti41Zr25Be28Fe6 bulk metallic glass. Journal of Thermal Analysis and Calorimetry, 2015, 121, 697-704.	2.0	22
35	Novel Cu–Ag bimetallic porous nanomembrane prepared from a multi-component metallic glass. RSC Advances, 2015, 5, 50565-50571.	1.7	12
36	Morphology and structure evolution of metallic nanowire arrays prepared by die nanoimprinting. Science Bulletin, 2015, 60, 629-633.	4.3	9

#	Article	IF	CITATIONS
37	Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel. Journal of Applied Electrochemistry, 2015, 45, 375-383.	1.5	31
38	Structural heterogeneity in a binary Pd–Si metallic glass. Philosophical Magazine Letters, 2015, 95, 77-84.	0.5	6
39	Direct in situ observation of metallic glass deformation by real-time nano-scale indentation. Scientific Reports, 2015, 5, 9122.	1.6	10
40	Highâ€accuracy bulk metallic glass mold insert for hot embossing of complex polymer optical devices. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 463-467.	2.4	16
41	Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry. Applied Physics A: Materials Science and Processing, 2015, 120, 145-153.	1.1	15
42	Rapid decomposition of Direct Blue 6 in neutral solution by Fe–B amorphous alloys. RSC Advances, 2015, 5, 6215-6221.	1.7	96
43	Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13ÂWtÂPct Cr-Type Martensitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 6090-6102.	1.1	32
44	Die imprinting of MGs: A one-step approach for large-area metallic photonic crystals. Materials and Design, 2015, 87, 1018-1021.	3. 3	17
45	Formation and Mechanical Properties of Pd-Si Binary Bulk Metallic Glasses. Advances in Materials Science and Engineering, 2014, 2014, 1-5.	1.0	1
46	Direct experimental evidence of nano-voids formation and coalescence within shear bands. Applied Physics Letters, 2014, 105, 181909.	1.5	51
47	Facile synthesis of air-stable nano/submicro dendritic copper structures and their anti-oxidation properties. RSC Advances, 2014, 4, 33362-33365.	1.7	12
48	Large-area and uniform amorphous metallic nanowire arrays prepared by die nanoimprinting. Journal of Alloys and Compounds, 2014, 605, 7-11.	2.8	26
49	Highly Uniform and Reproducible Surface Enhanced Raman Scattering on Air-stable Metallic Glassy Nanowire Array. Scientific Reports, 2014, 4, 5835.	1.6	86
50	Ti-Zr-Be-Fe quaternary bulk metallic glasses designed by Fe alloying. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2090-2097.	2.0	12
51	Two-zone heterogeneous structure within shear bands of a bulk metallic glass. Applied Physics Letters, 2013, 103, .	1.5	43
52	Preparation of nanoparticles with an environment-friendly approach. Journal of Environmental Sciences, 2009, 21, 727-730.	3.2	8