
Luis J V Galietta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1766390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TMEM16A, A Membrane Protein Associated with Calcium-Dependent Chloride Channel Activity. Science, 2008, 322, 590-594.	6.0	1,124
2	Small-molecule correctors of defective ÂF508-CFTR cellular processing identified by high-throughput screening. Journal of Clinical Investigation, 2005, 115, 2564-2571.	3.9	502
3	Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin–induced intestinal fluid secretion. Journal of Clinical Investigation, 2002, 110, 1651-1658.	3.9	490
4	Structure and Function of TMEM16 Proteins (Anoctamins). Physiological Reviews, 2014, 94, 419-459.	13.1	414
5	Chloride channels as drug targets. Nature Reviews Drug Discovery, 2009, 8, 153-171.	21.5	400
6	Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin–induced intestinal fluid secretion. Journal of Clinical Investigation, 2002, 110, 1651-1658.	3.9	375
7	Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Letters, 2001, 499, 220-224.	1.3	320
8	Discovery of Glycine Hydrazide Pore-occluding CFTR Inhibitors. Journal of General Physiology, 2004, 124, 125-137.	0.9	243
9	Novel CFTR Chloride Channel Activators Identified by Screening of Combinatorial Libraries Based on Flavone and Benzoquinolizinium Lead Compounds. Journal of Biological Chemistry, 2001, 276, 19723-19728.	1.6	197
10	Nanomolar Affinity Small Molecule Correctors of Defective ΔF508-CFTR Chloride Channel Gating. Journal of Biological Chemistry, 2003, 278, 35079-35085.	1.6	192
11	Regulation of TMEM16A Chloride Channel Properties by Alternative Splicing. Journal of Biological Chemistry, 2009, 284, 33360-33368.	1.6	188
12	High-affinity Activators of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Chloride Conductance Identified by High-throughput Screening. Journal of Biological Chemistry, 2002, 277, 37235-37241.	1.6	163
13	Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. Journal of Physiology, 2012, 590, 6141-6155.	1.3	151
14	Phenylglycine and Sulfonamide Correctors of Defective ΔF508 and G551D Cystic Fibrosis Transmembrane Conductance Regulator Chloride-Channel Gating. Molecular Pharmacology, 2005, 67, 1797-1807.	1.0	145
15	Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L242-L249.	1.3	142
16	Thiocyanate Transport in Resting and IL-4-Stimulated Human Bronchial Epithelial Cells: Role of Pendrin and Anion Channels. Journal of Immunology, 2007, 178, 5144-5153.	0.4	133
17	Targeting ion channels in cystic fibrosis. Journal of Cystic Fibrosis, 2015, 14, 561-570.	0.3	126
18	IL-4 Is a Potent Modulator of Ion Transport in the Human Bronchial Epithelium In Vitro. Journal of Immunology, 2002, 168, 839-845.	0.4	124

#	Article	IF	CITATIONS
19	Influence of cell background on pharmacological rescue of mutant CFTR. American Journal of Physiology - Cell Physiology, 2010, 298, C866-C874.	2.1	118
20	The TMEM16 Protein Family: A New Class of Chloride Channels?. Biophysical Journal, 2009, 97, 3047-3053.	0.2	114
21	Correction of delF508-CFTR activity with benzo(c)quinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells. Journal of Cell Science, 2001, 114, 4073-4081.	1.2	108
22	Altered channel gating mechanism for CFTR inhibition by a highâ€affinity thiazolidinone blocker. FEBS Letters, 2004, 558, 52-56.	1.3	103
23	Development of Substituted Benzo[c]quinolizinium Compounds as Novel Activators of the Cystic Fibrosis Chloride Channel. Journal of Biological Chemistry, 1999, 274, 27415-27425.	1.6	102
24	Evidence against the Rescue of Defective ΔF508-CFTR Cellular Processing by Curcumin in Cell Culture and Mouse Models. Journal of Biological Chemistry, 2004, 279, 40629-40633.	1.6	101
25	Why is the cystic fibrosis gene so frequent?. Human Genetics, 1989, 84, 1-5.	1.8	97
26	TMEM16A Protein: A New Identity for Ca ²⁺ -Dependent Cl ^{â^'} Channels. Physiology, 2010, 25, 357-363.	1.6	97
27	Evidence for direct CFTR inhibition by CFTRinh-172 based on Arg347 mutagenesis. Biochemical Journal, 2008, 413, 135-142.	1.7	96
28	Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Molecular Biology of the Cell, 2012, 23, 4188-4202.	0.9	96
29	Altered Expression of Ano1 Variants in Human Diabetic Gastroparesis. Journal of Biological Chemistry, 2011, 286, 13393-13403.	1.6	95
30	CFTR Chloride Channel Drug Discovery - Inhibitors as Antidiarrheals and Activators for Therapy of Cystic Fibrosis. Current Pharmaceutical Design, 2006, 12, 2235-2247.	0.9	81
31	Rescue of the mutant CFTR chloride channel by pharmacological correctors and low temperature analyzed by gene expression profiling. American Journal of Physiology - Cell Physiology, 2011, 301, C872-C885.	2.1	79
32	Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. Journal of Physiology, 2015, 593, 3829-3848.	1.3	79
33	Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release. Scientific Reports, 2016, 6, 36016.	1.6	75
34	Modification of transepithelial ion transport in human cultured bronchial epithelial cells by interferon-γ. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1186-L1194.	1.3	73
35	KCNE1-like Gene Is Deleted in AMME Contiguous Gene Syndrome: Identification and Characterization of the Human and Mouse Homologs. Genomics, 1999, 60, 251-257.	1.3	72
36	DOG1 Regulates Growth and IGFBP5 in Gastrointestinal Stromal Tumors. Cancer Research, 2013, 73, 3661-3670.	0.4	68

#	Article	IF	CITATIONS
37	Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Letters, 1995, 373, 229-233.	1.3	66
38	The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis. International Journal of Biochemistry and Cell Biology, 2014, 52, 73-76.	1.2	63
39	Benzoflavone activators of the cystic fibrosis transmembrane conductance regulator: towards a pharmacophore model for the nucleotide-binding domain. Bioorganic and Medicinal Chemistry, 2003, 11, 4113-4120.	1.4	62
40	Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport. Current Opinion in Pharmacology, 2017, 34, 91-97.	1.7	58
41	CFTR activation in human bronchial epithelial cells by novel benzoflavone and benzimidazolone compounds. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L180-L188.	1.3	55
42	Dual Activity of Aminoarylthiazoles on the Trafficking and Gating Defects of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Caused by Cystic Fibrosis Mutations. Journal of Biological Chemistry, 2011, 286, 15215-15226.	1.6	55
43	A novel missense mutation in ANO5/TMEM16E is causative for gnathodiaphyseal dyplasia in a large Italian pedigree. European Journal of Human Genetics, 2013, 21, 613-619.	1.4	53
44	Correction of G551D-CFTR transport defect in epithelial monolayers by genistein but not by CPX or MPB-07. British Journal of Pharmacology, 2002, 137, 504-512.	2.7	52
45	Antihypertensive 1,4-Dihydropyridines as Correctors of the Cystic Fibrosis Transmembrane Conductance Regulator Channel Gating Defect Caused by Cystic Fibrosis Mutations. Molecular Pharmacology, 2005, 68, 1736-1746.	1.0	52
46	Proteomic analysis of the airway surface liquid: modulation by proinflammatory cytokines. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L185-L198.	1.3	51
47	The anoctamin family: TMEM16A and TMEM16B as calciumâ€activated chloride channels. Experimental Physiology, 2012, 97, 177-183.	0.9	50
48	Lectin Conjugates as Potent, Nonabsorbable CFTR Inhibitors for Reducing Intestinal Fluid Secretion in Cholera. Gastroenterology, 2007, 132, 1234-1244.	0.6	49
49	Alternative Splicing at a NAGNAG Acceptor Site as a Novel Phenotype Modifier. PLoS Genetics, 2010, 6, e1001153.	1.5	49
50	Regulation of transepithelial ion transport by two different purinoceptors in the apical membrane of canine kidney (MDCK) cells. British Journal of Pharmacology, 1995, 114, 1052-1056.	2.7	47
51	Characterization of a murine gene homologous to the bovine CaCC chloride channel. Gene, 1999, 228, 181-188.	1.0	47
52	Gelsolin Secretion in Interleukin-4–treated Bronchial Epithelia and in Asthmatic Airways. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1090-1096.	2.5	47
53	Esculentin-1a-Derived Peptides Promote Clearance of Pseudomonas aeruginosa Internalized in Bronchial Cells of Cystic Fibrosis Patients and Lung Cell Migration: Biochemical Properties and a Plausible Mode of Action. Antimicrobial Agents and Chemotherapy, 2016, 60, 7252-7262.	1.4	47
54	Cystic Fibrosis: A New Target for 4-Imidazo[2,1- <i>b</i>]thiazole-1,4-dihydropyridines. Journal of Medicinal Chemistry, 2011, 54, 3885-3894.	2.9	45

#	Article	IF	CITATIONS
55	Partial Rescue of F508del-CFTR Stability and Trafficking Defects by Double Corrector Treatment. International Journal of Molecular Sciences, 2021, 22, 5262.	1.8	45
56	Activation of G551D CFTR channel with MPB-91: regulation by ATPase activity and phosphorylation. American Journal of Physiology - Cell Physiology, 2001, 281, C1657-C1666.	2.1	44
57	Genetic Inhibition Of The Ubiquitin Ligase Rnf5 Attenuates Phenotypes Associated To F508del Cystic Fibrosis Mutation. Scientific Reports, 2015, 5, 12138.	1.6	44
58	Ionocytes and CFTR Chloride Channel Expression in Normal and Cystic Fibrosis Nasal and Bronchial Epithelial Cells. Cells, 2020, 9, 2090.	1.8	44
59	IL-12 Can Target Human Lung Adenocarcinoma Cells and Normal Bronchial Epithelial Cells Surrounding Tumor Lesions. PLoS ONE, 2009, 4, e6119.	1.1	43
60	High-Throughput Screening for Modulators of CFTR Activity Based on Genetically Engineered Cystic Fibrosis Disease-Specific iPSCs. Stem Cell Reports, 2019, 12, 1389-1403.	2.3	43
61	Increased expression of ATP12A proton pump in cystic fibrosis airways. JCI Insight, 2018, 3, .	2.3	43
62	Autocrine Regulation of Volume-sensitive Anion Channels in Airway Epithelial Cells by Adenosine. Journal of Biological Chemistry, 1999, 274, 11701-11707.	1.6	41
63	High throughput screening for modulators of <i>ACVR1</i> transcription potentially applicable to the treatment of <i>Fibrodysplasia Ossificans Progressiva</i> . DMM Disease Models and Mechanisms, 2016, 9, 685-96.	1.2	40
64	TRPV4 and purinergic receptor signalling pathways are separately linked in airway epithelia to CFTR and TMEM16A chloride channels. Journal of Physiology, 2019, 597, 5859-5878.	1.3	40
65	3-(2-Benzyloxyphenyl)isoxazoles and isoxazolines: synthesis and evaluation as CFTR activators. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2509-2512.	1.0	39
66	The Combined Therapeutic Effects of Bortezomib and Fenretinide on Neuroblastoma Cells Involve Endoplasmic Reticulum Stress Response. Clinical Cancer Research, 2009, 15, 1199-1209.	3.2	39
67	An improved method to obtain highly differentiated monolayers of human bronchial epithelial cells. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 478-481.	0.7	38
68	Managing the Underlying Cause of Cystic Fibrosis: A Future Role for Potentiators and Correctors. Paediatric Drugs, 2013, 15, 393-402.	1.3	38
69	TMEM16A alternative splicing coordination in breast cancer. Molecular Cancer, 2013, 12, 75.	7.9	37
70	Identification and characterization of a novel promoter for the human <i>ANO1</i> gene regulated by the transcription factor signal transducer and activator of transcription 6 (STAT6). FASEB Journal, 2015, 29, 152-163.	0.2	37
71	Characterization of chloride and cation channels in cultured human keratinocytes. Pflugers Archiv European Journal of Physiology, 1991, 418, 18-25.	1.3	36
72	Activation of Ca2+-dependent K+ and Cl? currents by UTP and ATP in CFPAC-1 cells. Pflugers Archiv European Journal of Physiology, 1994, 426, 534-541.	1.3	35

#	Article	IF	CITATIONS
73	TMEM16A–TMEM16B chimaeras to investigate the structure–function relationship of calcium-activated chloride channels. Biochemical Journal, 2013, 452, 443-455.	1.7	35
74	Functional analysis of acid-activated Clâ^' channels: Properties and mechanisms of regulation. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 105-114.	1.4	35
75	Structure-Activity Relationship of 1,4-Dihydropyridines as Potentiators of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. Molecular Pharmacology, 2007, 72, 197-207.	1.0	34
76	Epithelial Sodium Channel Inhibition in Primary Human Bronchial Epithelia by Transfected siRNA. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 211-216.	1.4	34
77	Discovery of a picomolar potency pharmacological corrector of the mutant CFTR chloride channel. Science Advances, 2020, 6, eaay9669.	4.7	34
78	A large conductance Clâ^' channel revealed by patch-recordings in human fibroblasts. Biochemical and Biophysical Research Communications, 1988, 154, 719-726.	1.0	33
79	Nanomolar CFTR Inhibition by Pore-Occluding Divalent Polyethylene Glycol-Malonic Acid Hydrazides. Chemistry and Biology, 2008, 15, 718-728.	6.2	33
80	Two CFTR mutations within codon 970 differently impact on the chloride channel functionality. Human Mutation, 2019, 40, 742-748.	1.1	33
81	Functional Analysis of Mutations in the Putative Binding Site for Cystic Fibrosis Transmembrane Conductance Regulator Potentiators. Journal of Biological Chemistry, 2007, 282, 9098-9104.	1.6	32
82	Mutation-Specific Potency and Efficacy of Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Potentiators. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 783-791.	1.3	32
83	A minimal isoform of the TMEM16A protein associated with chloride channel activity. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2214-2223.	1.4	32
84	An electrogenic amino acid transporter in the apical membrane of cultured human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L917-L923.	1.3	31
85	Properties of CFTR activated by the xanthine derivative X-33 in human airway Calu-3 cells. American Journal of Physiology - Cell Physiology, 2000, 279, C1925-C1937.	2.1	31
86	Upregulation of TMEM16A Protein in Bronchial Epithelial Cells by Bacterial Pyocyanin. PLoS ONE, 2015, 10, e0131775.	1.1	31
87	Synthesis and structure–activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis. European Journal of Medicinal Chemistry, 2015, 99, 14-35.	2.6	31
88	Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A). Journal of Medicinal Chemistry, 2017, 60, 4626-4635.	2.9	31
89	Synthesis and biological evaluation of novel thiazole- VX-809 hybrid derivatives as F508del correctors by QSAR-based filtering tools. European Journal of Medicinal Chemistry, 2018, 144, 179-200.	2.6	29
90	High-throughput screening identifies FAU protein as a regulator of mutant cystic fibrosis transmembrane conductance regulator channel. Journal of Biological Chemistry, 2018, 293, 1203-1217.	1.6	29

#	Article	IF	CITATIONS
91	High-Throughput Screening of Libraries of Compounds to Identify CFTR Modulators. Methods in Molecular Biology, 2011, 741, 13-21.	0.4	29
92	Extracellular 2-chloroadenosine and ATP stimulate volume-sensitive Clâ^'current and calcium mobilization in human tracheal 9HTEoâ^' cells. FEBS Letters, 1992, 304, 61-65.	1.3	28
93	CFTR pharmacology. Cellular and Molecular Life Sciences, 2017, 74, 117-128.	2.4	28
94	Epithelial Sodium Channel Silencing as a Strategy to Correct the Airway Surface Fluid Deficit in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 445-452.	1.4	27
95	Cell-based imaging of sodium iodide symporter activity with the yellow fluorescent protein variant YFP-H148Q/I152L. American Journal of Physiology - Cell Physiology, 2007, 292, C814-C823.	2.1	25
96	Effect of Inflammatory Stimuli on Airway Ion Transport. Proceedings of the American Thoracic Society, 2004, 1, 62-65.	3.5	24
97	Non-canonical translation start sites in the TMEM16A chloride channel. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 89-97.	1.4	24
98	Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways. European Journal of Pharmacology, 2016, 781, 100-108.	1.7	24
99	Thymosin α-1 does not correct F508del-CFTR in cystic fibrosis airway epithelia. JCl Insight, 2018, 3, .	2.3	23
100	4-Chlorobenzo[F]isoquinoline (CBIQ), a novel activator of CFTR and ΔF508 CFTR. European Journal of Pharmacology, 2005, 516, 118-124.	1.7	22
101	Pharmacological Correctors of Mutant CFTR Mistrafficking. Frontiers in Pharmacology, 2012, 3, 175.	1.6	22
102	Unravelling druggable signalling networks that control F508del-CFTR proteostasis. ELife, 2015, 4, .	2.8	22
103	A volume-sensitive chloride conductance revealed in cultured human keratinocytes by 36Clâ^ efflux and whole-cell patch clamp recording. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1112, 39-44.	1.4	21
104	Synthesis of 4-thiophen-2′-yl-1,4-dihydropyridines as potentiators of the CFTR chloride channel. Bioorganic and Medicinal Chemistry, 2009, 17, 7894-7903.	1.4	21
105	Ex vivo model predicted in vivo efficacy of CFTR modulator therapy in a child with rare genotype. Molecular Genetics & Genomic Medicine, 2021, 9, e1656.	0.6	21
106	Comprehensive Analysis of Combinatorial Pharmacological Treatments to Correct Nonsense Mutations in the CFTR Gene. International Journal of Molecular Sciences, 2021, 22, 11972.	1.8	21
107	Double Mechanism for Apical Tryptophan Depletion in Polarized Human Bronchial Epithelium. Journal of Immunology, 2004, 173, 542-549.	0.4	20
108	Ca ²⁺ â€Activated Cl ^{â^'} Channels. , 2011, 1, 2155-2174.		20

#	Article	IF	CITATIONS
109	An overview on chemical structures as ΔF508-CFTR correctors. European Journal of Medicinal Chemistry, 2019, 180, 430-448.	2.6	20
110	Pharmacological rescue of mutant CFTR protein improves the viscoelastic properties of CF mucus. Journal of Cystic Fibrosis, 2016, 15, 295-301.	0.3	19
111	The L467F-F508del Complex Allele Hampers Pharmacological Rescue of Mutant CFTR by Elexacaftor/Tezacaftor/Ivacaftor in Cystic Fibrosis Patients: The Value of the Ex Vivo Nasal Epithelial Model to Address Non-Responders to CFTR-Modulating Drugs. International Journal of Molecular Sciences, 2022, 23, 3175.	1.8	19
112	A forskolin and verapamil sensitive K+ current in human tracheal cells. Biochemical and Biophysical Research Communications, 1991, 179, 1155-1160.	1.0	18
113	Current development of CFTR potentiators in the last decade. European Journal of Medicinal Chemistry, 2020, 204, 112631.	2.6	18
114	Identification of CFTR activators and inhibitors: chance or design?. Current Opinion in Pharmacology, 2004, 4, 497-503.	1.7	17
115	TMEM16A (ANO1) as a therapeutic target in cystic fibrosis. Current Opinion in Pharmacology, 2022, 64, 102206.	1.7	17
116	Block of CFTR-dependent chloride currents by inhibitors of multidrug resistance-associated proteins. European Journal of Pharmacology, 2007, 560, 127-131.	1.7	16
117	New Pulmonary Therapies Directed at Targets Other than CFTR. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a009787-a009787.	2.9	15
118	Phenylquinoxalinone CFTR activator as potential prosecretory therapy for constipation. Translational Research, 2017, 182, 14-26.e4.	2.2	15
119	The Autophagy Inhibitor Spautin-1 Antagonizes Rescue of Mutant CFTR Through an Autophagy-Independent and USP13-Mediated Mechanism. Frontiers in Pharmacology, 2018, 9, 1464.	1.6	15
120	ANO4 (Anoctamin 4) Is a Novel Marker of Zona Glomerulosa That Regulates Stimulated Aldosterone Secretion. Hypertension, 2019, 74, 1152-1159.	1.3	15
121	Chloride transport modulators as drug candidates. American Journal of Physiology - Cell Physiology, 2021, 321, C932-C946.	2.1	15
122	Novel Hits in the Correction of ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein: Synthesis, Pharmacological, and ADME Evaluation of Tetrahydropyrido[4,3- <i>d</i>)pyrimidines for the Potential Treatment of Cystic Fibrosis. Journal of Medicinal Chemistry, 2015, 58, 9697-9711.	2.9	14
123	Evaluation of a systems biology approach to identify pharmacological correctors of the mutant CFTR chloride channel. Journal of Cystic Fibrosis, 2016, 15, 425-435.	0.3	14
124	Speeding Up the Identification of Cystic Fibrosis Transmembrane Conductance Regulator-Targeted Drugs: An Approach Based on Bioinformatics Strategies and Surface Plasmon Resonance. Molecules, 2018, 23, 120.	1.7	14
125	Modulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity and Genistein Binding by Cytosolic pH*. Journal of Biological Chemistry, 2010, 285, 41591-41596.	1.6	13
126	Identification, Structure–Activity Relationship, and Biological Characterization of 2,3,4,5-Tetrahydro-1 <i>H</i> -pyrido[4,3- <i>b</i>]indoles as a Novel Class of CFTR Potentiators. Journal of Medicinal Chemistry, 2020, 63, 11169-11194.	2.9	12

#	Article	IF	CITATIONS
127	Alternative Splicing of In-Frame Exon Associated with Premature Termination Codons: Implications for Readthrough Therapies. Human Mutation, 2013, 34, 287-291.	1.1	11
128	Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity. Scientific Reports, 2016, 6, 38788.	1.6	11
129	Phenylhydrazones as Correctors of a Mutant Cystic Fibrosis Transmembrane Conductance Regulator. Archiv Der Pharmazie, 2016, 349, 112-123.	2.1	11
130	Peripheral localization of the epithelial sodium channel in the apical membrane of bronchial epithelial cells. Experimental Physiology, 2019, 104, 866-875.	0.9	11
131	Lack of Kcnn4 improves mucociliary clearance in muco-obstructive lung disease. JCI Insight, 2020, 5, .	2.3	11
132	Chromosomal Localization of the Genes (CLNS1A and CLNS1B) Coding for the Swelling-Dependent Chloride Channel ICIn. Genomics, 1996, 38, 438-441.	1.3	10
133	Development of the Olfactory Epithelium and Nasal Glands in TMEM16A-/- and TMEM16A+/+ Mice. PLoS ONE, 2015, 10, e0129171.	1.1	10
134	Pharmacoproteomics pinpoints HSP70 interaction for correction of the most frequent Wilson disease-causing mutant of ATP7B. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32453-32463.	3.3	9
135	Bioactive Thymosin Alpha-1 Does Not Influence F508del-CFTR Maturation and Activity. Scientific Reports, 2019, 9, 10310.	1.6	8
136	Low Ca2+-sensitive maxi-K+ channels in human cultured fibroblasts. Pflugers Archiv European Journal of Physiology, 1988, 413, 99-101.	1.3	7
137	A class of non-selective cation channels in human fibroblasts. FEBS Letters, 1989, 253, 43-46.	1.3	7
138	Ligand-based design, in silico ADME-Tox filtering, synthesis and biological evaluation to discover new soluble 1,4-DHP-based CFTR activators. European Journal of Medicinal Chemistry, 2012, 55, 188-194.	2.6	6
139	Characterization of the human gene coding for the swelling-dependent chloride channel ICIn at position 11q13.5–14.1 (CLNS1A) and further characterization of the chromosome 6 (CLNS1B) localization. Gene, 1998, 209, 59-63.	1.0	5
140	α-Aminoazaheterocyclic-Methylglyoxal Adducts Do Not Inhibit Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Activity. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 529-535.	1.3	4
141	Esc peptides as novel potentiators of defective cystic fibrosis transmembrane conductance regulator: an unprecedented property of antimicrobial peptides. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	4
142	Asymmetric 4â€Arylâ€1,4â€dihydropyridines Potentiate Mutant Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). ChemMedChem, 2012, 7, 1799-1807.	1.6	3
143	The search for a common structural moiety among selected pharmacological correctors of the mutant CFTR chloride channel. Future Medicinal Chemistry, 2014, 6, 1857-1868.	1.1	3
144	New Genetic and Pharmacological Treatments for Cystic Fibrosis. Current Pediatric Reviews, 2009, 5, 8-27.	0.4	2

#	Article	IF	CITATIONS
145	Finding new drugs to enhance anion secretion in cystic fibrosis: Toward suitable systems for better drug screening. Report on the pre-conference meeting to the 12th ECFS Basic Science Conference, Albufeira, 25–28 March 2015. Journal of Cystic Fibrosis, 2015, 14, 700-705.	0.3	2
146	Analysis of ion transport in the airway epithelium using RNA interference. Current Opinion in Molecular Therapeutics, 2009, 11, 282-91.	2.8	2
147	Insensitivity of volume-sensitive chloride currents to chromones in human airway epithelial cells. British Journal of Pharmacology, 1998, 125, 1382-1386.	2.7	1
148	In Vitro/Ex Vivo Fluorescence Assays of CFTR Chloride Channel Function. , 2005, 34, 93-101.		1
149	TMEM16 Proteins: Membrane Channels with Unusual Pores. Biophysical Journal, 2016, 111, 1821-1822.	0.2	1
150	Correcting the basic ion transport defects in cystic fibrosis. , 2014, , 116-128.		1
151	KCa3.1 differentially regulates trachea and bronchi epithelial gene expression in a chronic-asthma mouse model. Physiological Genomics, 2022, 54, 273-282.	1.0	1
152	3-(2-Benzyloxyphenyl)isoxazoles and Isoxazolines: Synthesis and Evaluation as CFTR Activators ChemInform, 2003, 34, no.	0.1	0
153	The Importance of Differentiating Gelsolin Isoforms. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 685a-685a.	2.5	0
154	Application of Green Fluorescent Protein-Based Chloride Indicators for Drug Discovery by High-Throughput Screening. , 2004, , 85-98.		0
155	TMEM16 Proteins (Anoctamins) in Epithelia. , 2016, , 553-567.		Ο