
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1766293/publications.pdf Version: 2024-02-01

Virtur

#	Article	IF	CITATIONS
1	Highly Efficient Nearâ€Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthreneâ€Based Chargeâ€Transfer Compound. Angewandte Chemie - International Edition, 2015, 54, 13068-13072.	13.8	500
2	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie - International Edition, 2017, 56, 11525-11529.	13.8	293
3	Highly Efficient Long-Wavelength Thermally Activated Delayed Fluorescence OLEDs Based on Dicyanopyrazino Phenanthrene Derivatives. ACS Applied Materials & Interfaces, 2017, 9, 9892-9901.	8.0	168
4	White light emission from exciplex using tris-(8-hydroxyquinoline)aluminum as chromaticity-tuning layer. Applied Physics Letters, 2001, 78, 3947-3949.	3.3	165
5	Supramolecular Structures and Assembly and Luminescent Properties of Quinacridone Derivatives. Journal of Physical Chemistry B, 2005, 109, 8008-8016.	2.6	135
6	Amidinate-ligated iridium(iii) bis(2-pyridyl)phenyl complex as an excellent phosphorescent material for electroluminescence devices. Chemical Communications, 2009, , 3699.	4.1	116
7	Highly Efficient White Organic Electroluminescence from a Double-Layer Device Based on a Boron Hydroxyphenylpyridine Complex. Angewandte Chemie - International Edition, 2002, 41, 182-184.	13.8	102
8	Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter. Journal of Materials Chemistry, 2011, 21, 3551.	6.7	102
9	Very High Efficiency Orangeâ€Red Lightâ€Emitting Devices with Low Rollâ€Off at High Luminance Based on an Ideal Host–Guest System Consisting of Two Novel Phosphorescent Iridium Complexes with Bipolar Transport. Advanced Functional Materials, 2014, 24, 7420-7426.	14.9	100
10	Achieving high power efficiency and low roll-off OLEDs based on energy transfer from thermally activated delayed excitons to fluorescent dopants. Chemical Communications, 2015, 51, 11972-11975.	4.1	95
11	Novel Emitting System Based on a Multifunctional Bipolar Phosphor: An Effective Approach for Highly Efficient Warmâ€White Lightâ€Emitting Devices with High Colorâ€Rendering Index at High Luminance. Advanced Materials, 2016, 28, 5963-5968.	21.0	92
12	High performance full color OLEDs based on a class of molecules with dual carrier transport channels and small singlet–triplet splitting. Chemical Communications, 2015, 51, 10632-10635.	4.1	88
13	Phenanthroimidazole-derivative semiconductors as functional layer in high performance OLEDs. New Journal of Chemistry, 2011, 35, 1534.	2.8	87
14	A novel tetraphenylsilane–phenanthroimidazole hybrid host material for highly efficient blue fluorescent, green and red phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 4394-4401.	5.5	86
15	High-performance blue electroluminescent devices based on hydroxyphenyl-pyridine beryllium complex. Applied Physics Letters, 2001, 78, 2300-2302.	3.3	83
16	Very high-efficiency red-electroluminescence devices based on an amidinate-ligated phosphorescent iridium complex. Journal of Materials Chemistry, 2009, 19, 8072.	6.7	81
17	Novel Blue Bipolar Thermally Activated Delayed Fluorescence Material as Host Emitter for Highâ€Efficiency Hybrid Warmâ€White OLEDs with Stable High Colorâ€Rendering Index. Advanced Functional Materials, 2018, 28, 1707002.	14.9	81
18	Hydroxyphenyl-pyridine Beryllium Complex (Bepp2) as a Blue Electroluminescent Material. Chemistry of Materials, 2000, 12, 2672-2675.	6.7	72

#	Article	IF	CITATIONS
19	Highly efficient phosphorescent OLEDs with host-independent and concentration-insensitive properties based on a bipolar iridium complex. Journal of Materials Chemistry C, 2013, 1, 2920.	5.5	68
20	New multifunctional phenanthroimidazole–phosphine oxide hybrids for high-performance red, green and blue electroluminescent devices. Journal of Materials Chemistry C, 2014, 2, 6817-6826.	5.5	68
21	Novel Deepâ€Blue Hybridized Local and Chargeâ€Transfer Host Emitter for Highâ€Quality Fluorescence/Phosphor Hybrid Quasiâ€White Organic Lightâ€Emitting Diode. Advanced Functional Materials, 2021, 31, 2100704.	14.9	63
22	Supramolecular Structure-Dependent Thermally-Activated Delayed Fluorescence (TADF) Properties of Organic Polymorphs. Journal of Physical Chemistry C, 2016, 120, 19759-19767.	3.1	60
23	Rational Design and Characterization of Heteroleptic Phosphorescent Complexes for Highly Efficient Deep-Red Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 11749-11758.	8.0	57
24	A phosphorescent material with high and balanced carrier mobility for efficient OLEDs. Chemical Communications, 2011, 47, 3150.	4.1	48
25	Rational design and characterization of heteroleptic phosphorescent iridium(<scp>iii</scp>) complexes for highly efficient deep-blue OLEDs. Journal of Materials Chemistry C, 2016, 4, 10246-10252.	5.5	48
26	Bis-Cyclometalated Iridium(III) Complexes Bearing Ancillary Guanidinate Ligands. Synthesis, Structure, and Highly Efficient Electroluminescence. Inorganic Chemistry, 2012, 51, 822-835.	4.0	47
27	Deepâ€Red to Nearâ€Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angewandte Chemie, 2017, 129, 11683-11687.	2.0	47
28	A novel bipolar phosphorescent host for highly efficient deep-red OLEDs at a wide luminance range of 1000–10 000 cd mâ^'2. Chemical Communications, 2015, 51, 12544-12547.	4.1	46
29	High-efficiency and high-quality white organic light-emitting diode employing fluorescent emitters. Organic Electronics, 2011, 12, 29-33.	2.6	41
30	Two Host–Dopant Emitting Systems Realizing Four-Color Emission: A Simple and Effective Strategy for Highly Efficient Warm-White Organic Light-Emitting Diodes with High Color-Rendering Index at High Luminance. ACS Applied Materials & Interfaces, 2016, 8, 11221-11225.	8.0	36
31	Fluorinated quinacridone derivative based organic light-emitting device with high power efficiency. Organic Electronics, 2010, 11, 1180-1184.	2.6	35
32	Solution processable quinacridone based materials as acceptor for organic heterojunction solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 2670-2676.	6.2	32
33	Novel beryllium complex as the non-doped emitter for highly efficient deep-blue organic light-emitting diode. Organic Electronics, 2011, 12, 1914-1919.	2.6	29
34	New oxazoline- and thiazoline-containing heteroleptic iridium(iii) complexes for highly-efficient phosphorescent organic light-emitting devices (PhOLEDs): colour tuning by varying the electroluminescence bandwidth. Journal of Materials Chemistry C, 2013, 1, 6800.	5.5	27
35	Rational Molecular Design of Multifunctional Blueâ€Emitting Materials Based on Phenanthroimidazole Derivatives Chemistry - A European Journal, 2021, 27, 7275-7282.	3.3	23
36	High-efficiency and deep-blue fluorescent organic light-emitting diodes with the easily controlled doping concentrations. Organic Electronics, 2011, 12, 1068-1072.	2.6	22

#	Article	IF	CITATIONS
37	Wellâ€Balanced Ambipolar Organic Single Crystals toward Highly Efficient Lightâ€Emitting Devices. Advanced Functional Materials, 2020, 30, 2002422.	14.9	22
38	A multifunctional bipolar host material based on phenanthroimidazole for efficient green and red PhOLEDs with low turn-on voltage. Organic Electronics, 2019, 69, 85-91.	2.6	20
39	Concentration-insensitive and low-driving-voltage OLEDs with high efficiency and little efficiency roll-off using a bipolar phosphorescent emitter. Organic Electronics, 2013, 14, 1649-1655.	2.6	19
40	Highly efficient, little efficiency roll-off orange-red electrophosphorescent devices based on a bipolar iridium complex. Journal of Materials Chemistry C, 2015, 3, 1452-1456.	5.5	19
41	A twisted phenanthroimidazole based molecule with high triplet energy as a host material for high efficiency phosphorescent OLEDs. Journal of Materials Chemistry C, 2018, 6, 12888-12895.	5.5	18
42	Color Tuning of Efficient Electroluminescence in the Blue and Green Regions Using Heteroleptic Iridium Complexes with 2-Phenoxyoxazole Ancillary Ligands. Organometallics, 2017, 36, 1810-1821.	2.3	16
43	High performance blue-green and green phosphorescent OLEDs based on iridium complexes with N^C^N-coordinated terdentate ligands. RSC Advances, 2015, 5, 18328-18334.	3.6	15
44	Efficient blue-emitting molecules by incorporating sulfur-containing moieties into triarylcyclopentadiene: Synthesis, crystal structures and photophysical properties. Dyes and Pigments, 2016, 124, 145-155.	3.7	15
45	Direct evidence for the electron–hole pair mechanism by studying the organic magneto-electroluminescence based on charge-transfer states. Organic Electronics, 2012, 13, 1774-1778.	2.6	14
46	Structurally simple phenanthroimidazole-based bipolar hosts for high-performance green and red electroluminescent devices. RSC Advances, 2015, 5, 73926-73934.	3.6	14
47	Achieving Highâ€Performance Pureâ€Red Electrophosphorescent Iridium(III) Complexes Based on Optimizing Ancillary Ligands. Chemistry - A European Journal, 2020, 26, 4410-4418.	3.3	11
48	Highly efficient phosphorescent organic light-emitting diodes based on novel bipolar iridium complexes with easily-tuned emission colors by adjusting fluorine substitution on phenylpyridine ligands. Journal of Materials Chemistry C, 2021, 9, 8329-8336.	5.5	11
49	Deep-Red and Near-Infrared Iridium Complexes with Fine-Tuned Emission Colors by Adjusting Trifluoromethyl Substitution on Cyclometalated Ligands Combined with Matched Ancillary Ligands for Highly Efficient Phosphorescent Organic Light-Emitting Diodes. Molecules, 2022, 27, 286.	3.8	11
50	AIEE-active blue-emitting molecules derived from methoxyl-decorated triarylcyclopentadienes: Synthesis, crystal structures, photophysical and electroluminescence properties. Dyes and Pigments, 2017, 147, 465-475.	3.7	10
51	Novel sky blue heteroleptic iridium(<scp>iii</scp>) complexes with finely-optimized emission spectra for highly efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 5579-5583.	5.5	10
52	Intramolecular π–π Interactions with a Chiral Auxiliary Ligand Control Diastereoselectivity in a Cyclometalated Ir(III) Complex. Inorganic Chemistry, 2018, 57, 12836-12849.	4.0	8
53	Synthesis and optoelectronic properties of dinuclear cyclometalated platinum (II) complexes containing naphthalene-functionalized carbazole groups in the single-emissive-layer WPLEDs. Journal of Organometallic Chemistry, 2017, 835, 52-59.	1.8	7
54	High-quality warm white organic electroluminescence from efficient phosphor-only emitting systems based on bipolar iridium(<scp>iii</scp>) complexes. Journal of Materials Chemistry C, 2020, 8, 16730-16735.	5.5	7

#	Article	IF	CITATIONS
55	Geometric Shape Regulation and Noncovalent Synthesis of One-Dimensional Organic Luminescent Nano-/Micro-Materials. Journal of Physical Chemistry Letters, 2017, 8, 3711-3717.	4.6	5
56	Simple/efficient phosphor-only emitting systems: from sky-blue to warm-white organic electroluminescence based on a novel bipolar phosphorescent emitter as the host. Journal of Materials Chemistry C, 2020, 8, 5355-5360.	5.5	5
57	Direct monitoring of the recombination zone in highly efficient phosphorescent organic light-emitting diodes based on a high-doping concentration emitting system. Journal of Materials Chemistry C, 2019, 7, 13287-13293.	5.5	4
58	Simple/efficient solution-processed emitting systems dominated by a novel bipolar small-molecule iridium(<scp>iii</scp>) complex. Materials Advances, 2021, 2, 5906-5911.	5.4	4
59	Facile access to high-performance reverse intersystem crossing OLED materials through an unsymmetrical D-A-D' molecular scaffold. Chemical Engineering Journal, 2022, 450, 137989.	12.7	4
60	Enhanced performance of white organic light-emitting devices based on ambipolar white organic single crystals. Applied Physics Letters, 2021, 118, .	3.3	1