Joshua J Kellogg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1765782/publications.pdf

Version: 2024-02-01

28 papers 1,067 citations

394286 19 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

1409 citing authors

#	Article	IF	CITATIONS
1	Biochemometrics for Natural Products Research: Comparison of Data Analysis Approaches and Application to Identification of Bioactive Compounds. Journal of Natural Products, 2016, 79, 376-386.	1.5	122
2	Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochemistry Reviews, 2017, 16, 271-293.	3.1	110
3	Alaskan Wild Berry Resources and Human Health under the Cloud of Climate Change. Journal of Agricultural and Food Chemistry, 2010, 58, 3884-3900.	2.4	81
4	Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Natural Product Reports, 2019, 36, 1196-1221.	5.2	72
5	Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity. Marine Drugs, 2014, 12, 5277-5294.	2.2	70
6	Opportunities and Limitations for Untargeted Mass Spectrometry Metabolomics to Identify Biologically Active Constituents in Complex Natural Product Mixtures. Journal of Natural Products, 2019, 82, 469-484.	1.5	62
7	The Chemistry of Kratom [<i>Mitragyna speciosa</i>]: Updated Characterization Data and Methods to Elucidate Indole and Oxindole Alkaloids. Journal of Natural Products, 2020, 83, 2165-2177.	1.5	61
8	Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study withHydrastis canadensis(Goldenseal). Journal of Natural Products, 2018, 81, 484-493.	1.5	56
9	Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (<i>Camellia sinensis</i>) as a Case Study. Journal of Natural Products, 2017, 80, 1457-1466.	1.5	53
10	Integration of Biochemometrics and Molecular Networking to Identify Antimicrobials in Angelica keiskei. Planta Medica, 2018, 84, 721-728.	0.7	36
11	A random subset implementation of weighted quantile sum (WQS _{RS}) regression for analysis of high-dimensional mixtures. Communications in Statistics Part B: Simulation and Computation, 2021, 50, 1119-1134.	0.6	36
12	Alaskan seaweeds lower inflammation in RAW 264.7 macrophages and decrease lipid accumulation in 3T3-L1 adipocytes. Journal of Functional Foods, 2015, 15, 396-407.	1.6	35
13	Promoting Wellness in Alaskan Villages: Integrating Traditional Knowledge and Science of Wild Berries. EcoHealth, 2011, 8, 199-209.	0.9	31
14	Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics. Journal of Pharmaceutical and Biomedical Analysis, 2017, 145, 604-610.	1.4	30
15	Interlaboratory Comparison of Untargeted Mass Spectrometry Data Uncovers Underlying Causes for Variability. Journal of Natural Products, 2021, 84, 824-835.	1.5	30
16	Chemical and in Vitro Assessment of Alaskan Coastal Vegetation Antioxidant Capacity. Journal of Agricultural and Food Chemistry, 2013, 61, 11025-11032.	2.4	27
17	Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea (<i>Camellia) Tj ETQq1 1 0.7843 In Vivo Extrapolation. Drug Metabolism and Disposition, 2018, 46, 552-560.</i>	314 rgBT /C 1.7	Overlock 10 Tf 22
18	Detection of adulteration in Hydrastis canadensis (goldenseal) dietary supplements via untargeted mass spectrometry-based metabolomics. Food and Chemical Toxicology, 2018, 120, 439-447.	1.8	22

#	Article	IF	CITATIONS
19	Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis). Phytochemistry Letters, 2016, 17, 219-225.	0.6	21
20	Assessing Transporterâ€Mediated Natural Productâ€Drug Interactions Via <i>In vitro</i> àâ€∢i>In VivoExtrapolation: Clinical Evaluation With a Probe Cocktail. Clinical Pharmacology and Therapeutics, 2021, 109, 1342-1352.	2.3	21
21	Identification of adulteration in botanical samples with untargeted metabolomics. Analytical and Bioanalytical Chemistry, 2020, 412, 4273-4286.	1.9	20
22	Composite score analysis for unsupervised comparison and network visualization of metabolomics data. Analytica Chimica Acta, 2020, 1095, 38-47.	2.6	19
23	Chemometric-Guided Approaches for Profiling and Authenticating Botanical Materials. Frontiers in Nutrition, 2021, 8, 780228.	1.6	17
24	Prospects for Commercialisation of an Alaska Native Wild Resource as a Commodity Crop. Journal of Entrepreneurship, 2011, 20, 77-101.	1.3	10
25	Chemical Evaluation of the Effects of Storage Conditions on the Botanical Goldenseal using Marker-based and Metabolomics Approaches. Yale Journal of Biology and Medicine, 2020, 93, 265-275.	0.2	2
26	Uncovering Bioactive Natural Products Via Biochemometric Methodologies. , 2020, , 271-279.		1
27	Partnering with Alaskan communities to examine health benefits of traditional wild berries. FASEB Journal, 2009, 23, LB469.	0.2	0
28	Untargeted metabolomics for the study of antiinfective plants. , 2022, , 335-359.		0