Beat Trueb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1765608/publications.pdf

Version: 2024-02-01

172207 189595 2,706 79 29 50 citations h-index g-index papers 79 79 79 2670 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Coincidence of NOD2-Associated Autoinflammatory Disease (Yao Syndrome) and HCV Infection With Fatal Consequences. Journal of Clinical Rheumatology, 2021, 27, S592-S594.	0.5	4
2	Dissecting the Interaction of FGF8 with Receptor FGFRL1. Biomolecules, 2020, 10, 1399.	1.8	7
3	A Novel Mutation in the <i>IL6R </i> Gene Identified in a Family with Asthma Patients. Genetic Testing and Molecular Biomarkers, 2020, 24, 658-664.	0.3	1
4	Functional domains of the FgfrL1 receptor. Developmental Biology, 2020, 461, 43-54.	0.9	6
5	Evolution of the fusogenic activity of the receptor FGFRL1. Archives of Biochemistry and Biophysics, 2017, 625-626, 54-64.	1.4	5
6	Identification of a MAFB mutation in a patient with multicentric carpotarsal osteolysis. Swiss Medical Weekly, 2017, 147, w14529.	0.8	12
7	Receptor FGFRL1 acts as a tumor suppressor in nude mice when overexpressed in HEK 293 Tet-On cells. Oncology Letters, 2016, 12, 4524-4530.	0.8	8
8	Receptor FGFRL1 does not promote cell proliferation but induces cell adhesion. International Journal of Molecular Medicine, 2016, 38, 30-38.	1.8	18
9	Deletion of exon 8 from the EXT1 gene causes multiple osteochondromas (MO) in a family with three affected members. SpringerPlus, 2016, 5, 71.	1.2	6
10	Cell–cell fusion induced by the Ig3 domain of receptor FGFRL1 in CHO cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2273-2285.	1.9	11
11	Phylogenetic analysis of receptor FgfrL1 shows divergence of the C-terminal end in rodents. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2015, 186, 43-50.	0.7	3
12	Targeted Disruption of the Intracellular Domain of Receptor FgfrL1 in Mice. PLoS ONE, 2014, 9, e105210.	1.1	13
13	The FgfrL1 receptor is required for development of slow muscle fibers. Developmental Biology, 2014, 394, 228-241.	0.9	25
14	Role of FGFRL1 and other FGF signaling proteins in early kidney development. Cellular and Molecular Life Sciences, 2013, 70, 2505-2518.	2.4	42
15	Splicing defect of CD33 and inflammatory syndrome associated with occult bacterial infection. Journal of Allergy and Clinical Immunology, 2013, 132, 490-493.e2.	1.5	1
16	Evidence that the novel receptor FGFRL1 signals indirectly via FGFR1. International Journal of Molecular Medicine, 2013, 32, 983-988.	1.8	10
17	Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling. PLoS ONE, 2012, 7, e33457.	1.1	16
18	Interaction of the receptor FGFRL1 with the negative regulator Spred1. Cellular Signalling, 2011, 23, 1496-1504.	1.7	20

#	Article	IF	CITATIONS
19	Biology of FGFRL1, the fifth fibroblast growth factor receptor. Cellular and Molecular Life Sciences, 2011, 68, 951-964.	2.4	112
20	A net-like structure with pores is observed during cell fusion induced by the receptor FGFRL1. Communicative and Integrative Biology, 2011, 4, 287-290.	0.6	3
21	The FGFRL1 Receptor Is Shed from Cell Membranes, Binds Fibroblast Growth Factors (FGFs), and Antagonizes FGF Signaling in Xenopus Embryos. Journal of Biological Chemistry, 2010, 285, 2193-2202.	1.6	57
22	Examination of FGFRL1 as a candidate gene for diaphragmatic defects at chromosome 4p16.3 shows that Fgfrl1 null mice have reduced expression of Tpm3, sarcomere genes and Lrtm1 in the diaphragm. Human Genetics, 2010, 127, 325-336.	1.8	28
23	Identification of a fibronectin interaction site in the extracellular matrix protein ameloblastin. Experimental Cell Research, 2010, 316, 1202-1212.	1.2	38
24	Genome-wide comparison of FGFRL1 with structurally related surface receptors. Experimental and Therapeutic Medicine, 2010, 1, 161-168.	0.8	8
25	Rapid Fusion and Syncytium Formation of Heterologous Cells upon Expression of the FGFRL1 Receptor. Journal of Biological Chemistry, 2010, 285, 37704-37715.	1.6	25
26	Comparison of the receptor FGFRL1 from sea urchins and humans illustrates evolution of a zinc binding motif in the intracellular domain. BMC Biochemistry, 2009, 10, 33.	4.4	15
27	Characterization of the first FGFRL1 mutation identified in a craniosynostosis patient. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 112-121.	1.8	38
28	The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Developmental Biology, 2009, 335, 106-119.	0.9	58
29	The cell surface receptor FGFRL1 forms constitutive dimers that promote cell adhesion. Experimental Cell Research, 2008, 314, 1071-1081.	1.2	39
30	Expression of phosphoproteins and amelotin in teeth. International Journal of Molecular Medicine, 2007, , .	1.8	6
31	Mice with a targeted disruption of the <i>Fgfrl1</i> gene die at birth due to alterations in the diaphragm. FEBS Journal, 2007, 274, 6241-6253.	2.2	46
32	Expression of phosphoproteins and amelotin in teeth. International Journal of Molecular Medicine, 2007, 19, 49-54.	1.8	12
33	Fgfrl1, a fibroblast growth factor receptor-like gene, is found in the cephalochordate Branchiostoma floridae but not in the urochordate Ciona intestinalis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 145, 43-49.	0.7	25
34	Expression of FGFRL1, a novel fibroblast growth factor receptor, during embryonic development. International Journal of Molecular Medicine, 2006, 17, 617.	1.8	10
35	Expression of FGFRL1, a novel fibroblast growth factor receptor, during embryonic development. International Journal of Molecular Medicine, 2006, 17, 617-20.	1.8	32
36	Fish possess multiple copies of fgfrl1, the gene for a novel FGF receptor. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1727, 65-74.	2.4	23

#	Article	IF	CITATIONS
37	Aberrant expression of FGFRL1, a novel FGF receptor, in ovarian tumors. International Journal of Molecular Medicine, 2005, 16, 1169.	1.8	7
38	Aberrant expression of FGFRL1, a novel FGF receptor, in ovarian tumors. International Journal of Molecular Medicine, 2005, 16, 1169-73.	1.8	17
39	Zyxin Interacts with the SH3 Domains of the Cytoskeletal Proteins LIM-nebulette and Lasp-1. Journal of Biological Chemistry, 2004, 279, 20401-20410.	1.6	97
40	Three members of the connective tissue growth factor family CCN are differentially regulated by mechanical stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1691, 33-40.	1.9	49
41	The lipoma preferred partner LPP interacts with α-actinin. Journal of Cell Science, 2003, 116, 1359-1366.	1.2	29
42	Characterization of FGFRL1, a Novel Fibroblast Growth Factor (FGF) Receptor Preferentially Expressed in Skeletal Tissues. Journal of Biological Chemistry, 2003, 278, 33857-33865.	1.6	69
43	Mechanical Stress Is Required for High-Level Expression of Connective Tissue Growth Factor. Experimental Cell Research, 2002, 274, 83-91.	1.2	108
44	The mouse Fgfrl1 gene coding for a novel FGF receptor-like protein. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1520, 247-250.	2.4	26
45	Analysis of the α-Actinin/Zyxin Interaction. Journal of Biological Chemistry, 2001, 276, 33328-33335.	1.6	39
46	Alternative Splicing of the First F3 Domain from Chicken Collagen XIV Affects Cell Adhesion and Heparin Binding. Journal of Biological Chemistry, 2001, 276, 9141-9148.	1.6	12
47	Loss of type VI collagen in experimental and most spontaneous human fibrosarcomas. , 2000, 86, 331-336.		5
48	DRG represents a family of two closely related GTP-binding proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1491, 196-204.	2.4	58
49	BSPRY, a novel protein of the Ro-Ret family. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1493, 255-258.	2.4	5
50	Characterization of a Novel Protein (FGFRL1) from Human Cartilage Related to FGF Receptors. Genomics, 2000, 69, 275-279.	1.3	126
51	An α-Actinin Binding Site of Zyxin Is Essential for Subcellular Zyxin Localization and α-Actinin Recruitment. Journal of Biological Chemistry, 1999, 274, 13410-13418.	1.6	92
52	An Ankyrin-like Protein with Transmembrane Domains Is Specifically Lost after Oncogenic Transformation of Human Fibroblasts. Journal of Biological Chemistry, 1999, 274, 7325-7333.	1.6	271
53	Molecular cloning of avian matrix Gla protein. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1395, 47-49.	2.4	11
54	An alternative insert of three amino acids is incorporated into collagen XIV in a developmentally regulated fashion1. FEBS Letters, 1998, 438, 325-328.	1.3	9

#	Article	IF	Citations
55	Down-Regulated Proteins of Mesenchymal Tumor Cells. Experimental Cell Research, 1998, 239, 161-168.	1.2	48
56	Characterization of Human Matrilin-3 (MATN3). Genomics, 1998, 53, 391-394.	1.3	41
57	Localization of the Gene for a Serine Protease with IGF-Binding Domain (PRSS11) to Human Chromosome 10q25.3–q26.2. Genomics, 1997, 45, 461-462.	1.3	16
58	Differential expression of mRNAs for endopeptidases in phenotypically modulated ('dedifferentiated') human articular chondrocytes. FEBS Letters, 1997, 412, 453-455.	1.3	13
59	Matrilin-3 from chicken cartilage. FEBS Letters, 1997, 415, 212-216.	1.3	33
60	DNA Methylation Accounts for the Inhibition of Collagen VI Expression in Transformed Fibroblasts. FEBS Journal, 1997, 249, 489-496.	0.2	16
61	Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Letters, 1996, 398, 187-192.	1.3	184
62	Tissue transglutaminase in mesenchymal tumour cells. Apoptosis: an International Journal on Programmed Cell Death, 1996, 1, 126-130.	2.2	4
63	A Zyxin-Related Protein whose Synthesis is Reduced in Virally Transformed Fibroblasts. FEBS Journal, 1996, 241, 657-663.	0.2	22
64	Expression and distribution of two alternatively spliced transcripts from the chicken $\hat{l}\pm 2$ (VI) collagen gene. Journal of Cellular Biochemistry, 1996, 63, 207-220.	1.2	3
65	Downâ€regulation of collagen XII in transformed mesenchymal cells. International Journal of Cancer, 1995, 60, 275-279.	2.3	5
66	A novel transcription factor and two members of the Sp 1 multigene family regulate the activity of the $\hat{l}\pm 2$ (VI) collagen promoter. Matrix Biology, 1995, 14, 653-663.	1.5	6
67	Complete primary structure of chicken collagen XIV. FEBS Journal, 1993, 212, 483-490.	0.2	52
68	Molecular cloning of a novel ras-like protein from chicken. FEBS Letters, 1992, 306, 181-184.	1.3	13
69	The two splice variants of collagen XII share a common 5′ end. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1171, 97-98.	2.4	26
70	Structural comparison of the chicken genes for alpha1(VI) and alpha2(VI) collagen. FEBS Journal, 1992, 205, 583-589.	0.2	12
71	Type XIV collagen is a varient of undulin. FEBS Journal, 1992, 207, 549-557.	0.2	39
72	Characterization of the chicken alpha1(VI) collagen promoter. FEBS Journal, 1992, 208, 769-774.	0.2	13

BEAT TRUEB

#	Article	IF	CITATION
73	Complete structure of the chicken alpha2(VI) collagen gene. FEBS Journal, 1991, 197, 177-184.	0.2	22
74	The promoter of the chicken $\hat{l}\pm 2$ (VI) collagen gene has features characteristic of house-keeping genes and of proto-oncogenes. Nucleic Acids Research, 1991, 19, 485-491.	6.5	42
75	The tissue form of chicken type VI collagen. FEBS Letters, 1987, 213, 319-323.	1.3	14
76	Type VI collagen represents a major fraction of connective tissue collagens. FEBS Journal, 1987, 166, 699-703.	0.2	81
77	Type VI collagen is a major component of the human cornea. FEBS Letters, 1986, 197, 55-58.	1.3	116
78	Nonenzymatic Glycosylation of Basement Membrane Collagen in Diabetes Mellitus. Collagen and Related Research, 1984, 4, 239-251.	2.2	45
79	Synthesis and quantitation of glucitollysine, a glycosylated amino acid elevated in proteins from diabetics. Analytical Biochemistry, 1982, 119, 330-334.	1.1	27