
Julie L Zilles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1765498/publications.pdf Version: 2024-02-01

Intel 70150

#	Article	IF	CITATIONS
1	Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. Journal of Environmental Quality, 2016, 45, 394-406.	1.0	126
2	Antimicrobial Use and Resistance in Swine Waste Treatment Systems. Applied and Environmental Microbiology, 2006, 72, 7813-7820.	1.4	111
3	Molecular Methods for Assessment of Antibiotic Resistance in Agricultural Ecosystems: Prospects and Challenges. Journal of Environmental Quality, 2016, 45, 441-453.	1.0	88
4	Effects of Pore-Scale Heterogeneity and Transverse Mixing on Bacterial Growth in Porous Media. Environmental Science & Technology, 2010, 44, 3085-3092.	4.6	67
5	An evaluation of primers for detecting denitrifiers via their functional genes. Environmental Microbiology, 2019, 21, 1196-1210.	1.8	50
6	Presence of Macrolide-Lincosamide-Streptogramin B and Tetracycline Antimicrobials in Swine Waste Treatment Processes and Amended Soil. Water Environment Research, 2005, 77, 57-62.	1.3	46
7	Adsorption of Extracellular Chromosomal DNA and Its Effects on Natural Transformation of <i>Azotobacter vinelandii</i> . Applied and Environmental Microbiology, 2010, 76, 4179-4184.	1.4	44
8	Prediction of N2O emissions under different field management practices and climate conditions. Science of the Total Environment, 2019, 646, 872-879.	3.9	40
9	Effects of Swine Manure on Macrolide, Lincosamide, and Streptogramin B Antimicrobial Resistance in Soils. Applied and Environmental Microbiology, 2010, 76, 2218-2224.	1.4	37
10	Perchlorate Reduction Using Free and Encapsulated <i>Azospira oryzae</i> Enzymes. Environmental Science & Technology, 2013, 47, 9934-9941.	4.6	30
11	Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens. Bioresource Technology, 2013, 147, 89-95.	4.8	29
12	Macrolide Resistance in Microorganisms at Antimicrobial-Free Swine Farms. Applied and Environmental Microbiology, 2009, 75, 5814-5820.	1.4	22
13	Seasonal Patterns in Microbial Community Composition in Denitrifying Bioreactors Treating Subsurface Agricultural Drainage. Microbial Ecology, 2015, 70, 710-723.	1.4	21
14	Flagella-Mediated Differences in Deposition Dynamics for <i>Azotobacter vinelandii</i> in Porous Media. Environmental Science & Technology, 2013, 47, 5162-5170.	4.6	16
15	Evaluating the Development of Biocatalytic Technology for the Targeted Removal of Perchlorate from Drinking Water. Environmental Science & amp; Technology, 2017, 51, 7178-7186.	4.6	16
16	Spatial Variation in the Bacterial and Denitrifying Bacterial Community in a Biofilter Treating Subsurface Agricultural Drainage. Microbial Ecology, 2014, 67, 265-272.	1.4	15
17	Influence of rye cover cropping on denitrification potential and year-round field N2O emissions. Science of the Total Environment, 2021, 765, 144295.	3.9	15
18	Interactions between dissolved natural organic matter and adsorbed DNA and their effect on natural transformation of Azotobacter vinelandii. Science of the Total Environment, 2012, 426, 430-435.	3.9	11

JULIE L ZILLES

#	Article	IF	CITATIONS
19	Adaptation of Delftia acidovorans for degradation of 2,4-dichlorophenoxyacetate in a microfluidic porous medium. Biodegradation, 2014, 25, 595-604.	1.5	11
20	A kinetic model of gene transfer via natural transformation of Azotobacter vinelandii. Environmental Science: Water Research and Technology, 2015, 1, 363-374.	1.2	10
21	Denitrifying Bioreactors Resist Disturbance from Fluctuating Water Levels. Frontiers in Environmental Science, 2017, 5, .	1.5	10
22	Impact of the contemporary environment on denitrifying bacterial communities. Ecological Engineering, 2015, 82, 469-473.	1.6	8
23	Biocatalytic perchlorate reduction: kinetics and effects of groundwater characteristics. Environmental Science: Water Research and Technology, 2015, 1, 913-921.	1.2	8
24	Biocatalytic removal of perchlorate and nitrate in ion-exchange waste brine. Environmental Science: Water Research and Technology, 2018, 4, 1181-1189.	1.2	7
25	Making Waves: Biocatalysis and Biosorption: Opportunities and Challenges Associated with a New Protein-Based Toolbox for Water and Wastewater Treatment. Water Research X, 2021, 12, 100112.	2.8	5
26	Microbial community modeling using reliability theory. ISME Journal, 2016, 10, 1809-1814.	4.4	4
27	Characterizing Isozymes of Chlorite Dismutase for Water Treatment. Frontiers in Microbiology, 2017, 8, 2423.	1.5	3
28	A Collaborative Longitudinal Design for Supporting Writing Pedagogies of STEM Faculty. Technical Communication Quarterly, 2020, 29, 411-426.	1.0	3
29	Examining engineering writing instruction at a large research university through the lens of writing studies. , 0, , .		3
30	Biological Nitrate Removal With Emerald Ash Borer-Killed Ash and High-Tannin Oak Woodchips. Frontiers in Environmental Science, 2021, 9, .	1.5	2
31	Writing Across Engineering: A Collaborative Approach to Support STEM Faculty's Integration of Writing Instruction in their Classes. , 0, , .		2
32	A Tale of Two Rubrics: Realigning Genre Instruction through Improved Response Rubrics in a Writing-intensive Physics Course. , 0, , .		1
33	Implementing Writing-as-Process in Engineering Education. , 0, , .		0