
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/176549/publications.pdf Version: 2024-02-01

WENCAL YANG

#	Article	IF	CITATIONS
1	Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Horticulture Research, 2018, 5, 50.	6.3	224
2	Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development. PLoS ONE, 2015, 10, e0130267.	2.5	106
3	Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Molecular Breeding, 2004, 14, 21-34.	2.1	101
4	Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.). Scientific Reports, 2015, 5, 8031.	3.3	89
5	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	2.8	73
6	Resistance in Lycopersicon esculentum Intraspecific Crosses to Race T1 Strains of Xanthomonas campestris pv. vesicatoria Causing Bacterial Spot of Tomato. Phytopathology, 2005, 95, 519-527.	2.2	71
7	Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. Journal of Experimental Botany, 2011, 62, 1831-1845.	4.8	68
8	In Silico Identification and Experimental Validation of Insertion-Deletion Polymorphisms in Tomato Genome. DNA Research, 2014, 21, 429-438.	3.4	63
9	Comparative Transcriptome Analysis of Resistant and Susceptible Tomato Lines in Response to Infection by Xanthomonas perforans Race T3. Frontiers in Plant Science, 2015, 6, 1173.	3.6	60
10	Marker-assisted Selection for Combining Resistance to Bacterial Spot and Bacterial Speck in Tomato. Journal of the American Society for Horticultural Science, 2005, 130, 716-721.	1.0	56
11	Breeding for Resistance to Tomato Bacterial Diseases in China: Challenges and Prospects. Horticultural Plant Journal, 2018, 4, 193-207.	5.0	46
12	Fine mapping and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3. Theoretical and Applied Genetics, 2012, 124, 533-542.	3.6	43
13	Improved Tomato Fruit Color within an Inbred Backcross Line Derived from Lycopersicon esculentum and L. hirsutum Involves the Interaction of Loci. Journal of the American Society for Horticultural Science, 2004, 129, 250-257.	1.0	43
14	Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Theoretical and Applied Genetics, 2010, 121, 1275-1287.	3.6	39
15	Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper () Tj ETQq	1 1 0,78431 2.4	l4 rgBT /Over
16	Genetics of female mate discrimination of heterospecific males in Nasonia (Hymenoptera,) Tj ETQq0 0 0 rgBT /	Overlock 1(0 Tf <u>5</u> 0 142 To
17	Discovery of intron polymorphisms in cultivated tomato using both tomato and Arabidopsis genomic information. Theoretical and Applied Cenetics, 2010, 121, 1199-1207	3.6	31

¹⁸Molecular Mapping of Hypersensitive Resistance from Tomato †Hawaii 7981' to<i>Xanthomonas
perforans</i>2.230

#	Article	IF	CITATIONS
19	Genetic variation in tomato populations from four breeding programs revealed by single nucleotide polymorphism and simple sequence repeat markers. Scientia Horticulturae, 2009, 122, 6-16.	3.6	29
20	Identification of Single-Copy Orthologous Genes between Physalis and Solanum lycopersicum and Analysis of Genetic Diversity in Physalis Using Molecular Markers. PLoS ONE, 2012, 7, e50164.	2.5	27
21	A chimeric transcript containing Psy1 and a potential mRNA is associated with yellow flesh color in tomato accession PI 114490. Planta, 2014, 240, 1011-1021.	3.2	27
22	Association Analysis for Bacterial Spot Resistance in a Directionally Selected Complex Breeding Population of Tomato. Phytopathology, 2015, 105, 1437-1445.	2.2	27
23	Identification of candidate genes underlying genic male-sterile msc-1 locus via genome resequencing in Capsicum annuum L Theoretical and Applied Genetics, 2018, 131, 1861-1872.	3.6	26
24	Fine mapping and molecular marker development of the Sm gene conferring resistance to gray leaf spot (Stemphylium spp.) in tomato. Theoretical and Applied Genetics, 2019, 132, 871-882.	3.6	24
25	Molecular mapping of a gene conferring resistance to Phytophthora capsici Leonian race 2 in pepper line Pl201234 (Capsicum annuum L.). Molecular Breeding, 2016, 36, 1.	2.1	23
26	Association and Genetic Identification of Loci for Four Fruit Traits in Tomato Using InDel Markers. Frontiers in Plant Science, 2017, 8, 1269.	3.6	23
27	The Aborted Microspores (AMS)-Like Gene Is Required for Anther and Microspore Development in Pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 2018, 19, 1341.	4.1	23
28	Genetic diversity in Apium graveolens and related species revealed by SRAP and SSR markers. Scientia Horticulturae, 2011, 129, 1-8.	3.6	21
29	A high-continuity and annotated tomato reference genome. BMC Genomics, 2021, 22, 898.	2.8	21
30	Genetics of flesh color and nucleotide sequence analysis of phytoene synthase gene 1 in a yellow-fruited tomato accession PI114490. Scientia Horticulturae, 2008, 118, 20-24.	3.6	20
31	A comparison of disease severity measurements using image analysis and visual estimates using a category scale for genetic analysis of resistance to bacterial spot in tomato. European Journal of Plant Pathology, 2014, 139, 125-136.	1.7	20
32	Impacts of Whole-Genome Triplication on <i>MIRNA</i> Evolution in <i>Brassica rapa</i> . Genome Biology and Evolution, 2015, 7, 3085-3096.	2.5	18
33	Lineage-specific evolution of Methylthioalkylmalate synthases (MAMs) involved in glucosinolates biosynthesis. Frontiers in Plant Science, 2015, 6, 18.	3.6	18
34	Mapping of a Heat-Stable Gene for Resistance to Southern Root-Knot Nematode in Solanum lycopersicum. Plant Molecular Biology Reporter, 2013, 31, 352-362.	1.8	15
35	Tomato. , 2007, , 1-125.		14
36	Transcription of lncRNA <i>ACoS-AS1</i> is essential to <i>trans</i> -splicing between <i>SIPsy1</i> and <i>ACoS-AS1</i> that causes yellow fruit in tomato. RNA Biology, 2020, 17, 596-607.	3.1	14

#	Article	IF	CITATIONS
37	Enriching Glucoraphanin in Brassica rapa Through Replacement of BrAOP2.2/BrAOP2.3 with Non-functional Genes. Frontiers in Plant Science, 2017, 8, 1329.	3.6	13
38	Development and validation of a standard area diagram set to aid estimation of bacterial spot severity on tomato leaves. European Journal of Plant Pathology, 2015, 142, 665-675.	1.7	12
39	Identification of Genes Differentially Expressed between Resistant and Susceptible Tomato Lines during Time-Course Interactions with Xanthomonas perforans Race T3. PLoS ONE, 2014, 9, e93476.	2.5	11
40	Auxin Metabolism Is Involved in Fruit Set and Early Fruit Development in the Parthenocarpic Tomato "R35-P― Frontiers in Plant Science, 2021, 12, 671713.	3.6	11
41	Resistance to Frogeye Leaf Spot in Maturity Groups VI and VII of Soybean Germplasm. Crop Science, 2001, 41, 549-552.	1.8	9
42	Sources for Heat-Stable Resistance to Southern Root-Knot Nematode (Meloidogyne incognita) in Solanum lycopersicum. Agricultural Sciences in China, 2009, 8, 697-702.	0.6	9
43	Tomato protein Rx4 mediates the hypersensitive response to Xanthomonas euvesicatoria pv. perforans race T3. Plant Journal, 2021, 105, 1630-1644.	5.7	9
44	Tomato SIPUB24 enhances resistance to Xanthomonas euvesicatoria pv. perforans race T3. Horticulture Research, 2021, 8, 30.	6.3	9
45	Genetics and Breeding for Resistance to Bacterial Diseases in Tomato. , 2006, , 379-419.		9
46	Mapping of CaPP2C35 involved in the formation of light-green immature pepper (Capsicum annuum L.) fruits via GWAS and BSA. Theoretical and Applied Genetics, 2022, 135, 591-604.	3.6	8
47	Identification and Analysis of Resistanceâ€like Genes in the Tomato Genome. Journal of Phytopathology, 2014, 162, 137-146.	1.0	7
48	Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. Horticulturae, 2022, 8, 209.	2.8	7
49	Marker-assisted development and characterization of near-isogenic lines carrying the Rx4 gene for hypersensitive resistance to Xanthomonas euvesicatoria pv. perforans race T3 in tomato. Molecular Breeding, 2019, 39, 1.	2.1	6
50	Loci underlying leaf agronomic traits identified by re-sequencing celery accessions based on an assembled genome. IScience, 2022, 25, 104565.	4.1	6
51	Natural Variation of Pto and Fen Genes and Marker-Assisted Selection for Resistance to Bacterial Speck in Tomato. Agricultural Sciences in China, 2011, 10, 827-837.	0.6	5
52	Genetic diversity among "Qamgur―varieties in China revealed by SSR markers. Euphytica, 2017, 213, 1.	1.2	5
53	SIGID1a Is a Putative Candidate Gene for qtph1.1, a Major-Effect Quantitative Trait Locus Controlling Tomato Plant Height. Frontiers in Genetics, 2020, 11, 881.	2.3	5
54	Inheritance of white petiole in celery and development of a tightly linked SCAR marker. Plant Breeding, 2012, 131, 340-344.	1.9	4

#	Article	IF	CITATIONS
55	Genetic and fruit trait differences between Chinese elite lines/varieties and American varieties of processing tomato. Scientia Horticulturae, 2017, 224, 251-257.	3.6	3
56	Analysis and fine mapping of a gene controlling the folded-leaf phenotype of a mutant tomato line. Euphytica, 2018, 214, 1.	1.2	3
57	Mapping and characterization of the Rx3 gene for resistance to Xanthomonas euvesicatoria pv. euvesicatoria race T1 in tomato. Theoretical and Applied Genetics, 2022, , 1.	3.6	1