Jane B Lian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1765235/publications.pdf

Version: 2024-02-01

61984 64796 6,947 123 43 79 citations h-index g-index papers 124 124 124 9490 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	LncMIR181A1HG is a novel chromatin-bound epigenetic suppressor of early stage osteogenic lineage commitment. Scientific Reports, 2022, 12, 7770.	3.3	4
2	Hypoxiaâ€inducible factor 2α is a novel inhibitor of chondrocyte maturation. Journal of Cellular Physiology, 2021, 236, 6963-6973.	4.1	4
3	Sustained Morphine Delivery Suppresses Bone Formation and Alters Metabolic and Circulating miRNA Profiles in Mice. Journal of the Endocrine Society, 2021, 5, A239-A240.	0.2	1
4	Ezh2â€dependent H3K27me3 modification dynamically regulates vitamin D3â€dependent epigenetic control of CYP24A1 gene expression in osteoblastic cells. Journal of Cellular Physiology, 2020, 235, 5404-5412.	4.1	6
5	Identification of tRNAâ€derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer. Journal of Cellular Physiology, 2020, 235, 5318-5327.	4.1	48
6	Switches in histone modifications epigenetically control vitamin D3â€dependent transcriptional upregulation of the CYP24A1 gene in osteoblastic cells. Journal of Cellular Physiology, 2020, 235, 5328-5339.	4.1	10
7	The Thyroid Hormone Receptor-RUNX2 Axis: A Novel Tumor Suppressive Pathway in Breast Cancer. Hormones and Cancer, 2020, 11, 34-41.	4.9	15
8	RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. Journal of Cellular Physiology, 2020, 235, 7261-7272.	4.1	34
9	Inhibition of the RUNX1-CBF \hat{l}^2 transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking. Oncotarget, 2020, 11, 2512-2530.	1.8	8
10	Bioactivity-Guided Isolation and Identification of Anti-adipogenic Constituents from the n-Butanol Fraction of Cissus quadrangularis. Critical Reviews in Eukaryotic Gene Expression, 2020, 30, 519-541.	0.9	3
11	Participation of integrin \hat{l}^2 3 in osteoblast differentiation induced by titanium with nano or microtopography. Journal of Biomedical Materials Research - Part A, 2019, 107, 1303-1313.	4.0	29
12	Osteogenic potential of hexane and dichloromethane fraction of Cissus quadrangularis on murine preosteoblast cell line MC3T3 1 (subclone 4). Journal of Cellular Physiology, 2019, 234, 23082-23096.	4.1	13
13	Mllâ€COMPASS complexes mediate H3K4me3 enrichment and transcription of the osteoblast master gene Runx2/p57 in osteoblasts. Journal of Cellular Physiology, 2019, 234, 6244-6253.	4.1	15
14	Ethyl acetate and nâ€butanol fraction of <i>Cissus quadrangularis</i> promotes the mineralization potential of murine preâ€osteoblast cell line MC3T3â€E1 (subâ€clone 4). Journal of Cellular Physiology, 2019, 234, 10300-10314.	4.1	11
15	RUNX1â€dependent mechanisms in biological control and dysregulation in cancer. Journal of Cellular Physiology, 2019, 234, 8597-8609.	4.1	48
16	Towards a more precise and individualized assessment of breast cancer risk. Aging, 2019, 11, 1305-1316.	3.1	9
17	Nanoparticleâ€based targeted cancer strategies for nonâ€invasive prostate cancer intervention. Journal of Cellular Physiology, 2018, 233, 6408-6417.	4.1	8
18	Loss of RUNX1 is associated with aggressive lung adenocarcinomas. Journal of Cellular Physiology, 2018, 233, 3487-3497.	4.1	27

#	Article	IF	Citations
19	Thyroid Hormone Receptor β Suppression of RUNX2 Is Mediated by Brahma-Related Gene 1–Dependent Chromatin Remodeling. Endocrinology, 2018, 159, 2484-2494.	2.8	15
20	Nuclear organization mediates cancer-compromised genetic and epigenetic control. Advances in Biological Regulation, 2018, 69, 1-10.	2.3	10
21	Epithelialâ€toâ€mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. Journal of Cellular Physiology, 2018, 233, 9136-9144.	4.1	80
22	Mitotic Gene Bookmarking: An Epigenetic Program to Maintain Normal and Cancer Phenotypes. Molecular Cancer Research, 2018, 16, 1617-1624.	3.4	19
23	Regulation of osteogenesis by long noncoding RNAs: An epigenetic mechanism contributing to bone formation. Connective Tissue Research, 2018, 59, 35-41.	2.3	21
24	Suppression of Breast Cancer Stem Cells and Tumor Growth by the RUNX1 Transcription Factor. Molecular Cancer Research, 2018, 16, 1952-1964.	3.4	48
25	Dissection of Individual Prostate Lobes in Mouse Models of Prostate Cancer to Obtain High Quality RNA. Journal of Cellular Physiology, 2017, 232, 14-18.	4.1	10
26	Runx2/DICER/miRNA Pathway in Regulating Osteogenesis. Journal of Cellular Physiology, 2017, 232, 182-191.	4.1	45
27	Ethanol Extract of <i>Cissus quadrangularis</i> Enhances Osteoblast Differentiation and Mineralization of Murine Pre-Osteoblastic MC3T3-E1 Cells. Journal of Cellular Physiology, 2017, 232, 540-547.	4.1	25
28	The connection between BRG1, CTCF and topoisomerases at TAD boundaries. Nucleus, 2017, 8, 150-155.	2.2	24
29	Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 438-449.	1.9	55
30	Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth. Advances in Experimental Medicine and Biology, 2017, 962, 95-102.	1.6	14
31	The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics, 2017, 9, 919-931.	2.1	108
32	Aneurysmal bone cysts and pathologic fracture associated with supernumerary ring chromosome 6 in two unrelated patients. American Journal of Medical Genetics, Part A, 2017, 173, 3205-3210.	1.2	3
33	Bivalent Epigenetic Control of Oncofetal Gene Expression in Cancer. Molecular and Cellular Biology, 2017, 37, .	2.3	42
34	Regulation of Bone Metabolism by Serotonin. Advances in Experimental Medicine and Biology, 2017, 1033, 35-46.	1.6	46
35	tsRNA signatures in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8071-8076.	7.1	202
36	Unique Regulatory Mechanisms for the Human Embryonic Stem Cell Cycle. Journal of Cellular Physiology, 2017, 232, 1254-1257.	4.1	3

#	Article	lF	Citations
37	Precocious Phenotypic Transcriptionâ€Factor Expression During Early Development. Journal of Cellular Biochemistry, 2017, 118, 953-958.	2.6	3
38	Synovium-Derived MicroRNAs Regulate Bone Pathways in Rheumatoid Arthritis. Journal of Bone and Mineral Research, 2017, 32, 461-472.	2.8	85
39	Identifying Nuclear Matrixâ€Attached DNA Across the Genome. Journal of Cellular Physiology, 2017, 232, 1295-1305.	4.1	19
40	Genome-wide DNase hypersensitivity, and occupancy of RUNX2 and CTCF reveal a highly dynamic gene regulome during MC3T3 pre-osteoblast differentiation. PLoS ONE, 2017, 12, e0188056.	2.5	10
41	Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget, 2017, 8, 17610-17627.	1.8	53
42	Development of a predictive miRNA signature for breast cancer risk among high-risk women. Oncotarget, 2017, 8, 112170-112183.	1.8	30
43	Oncofetal Epigenetic Bivalency in Breast Cancer Cells: H3K4 and H3K27 Tri-Methylation as a Biomarker for Phenotypic Plasticity. Journal of Cellular Physiology, 2016, 231, 2474-2481.	4.1	25
44	Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages. Journal of Cellular Physiology, 2016, 231, 1090-1096.	4.1	38
45	Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. Journal of Cellular Biochemistry, 2016, 117, 9-19.	2.6	39
46	Transient RUNX1 Expression during Early Mesendodermal Differentiation ofÂhESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling. Stem Cell Reports, 2016, 7, 884-896.	4.8	21
47	Maternal expression and early induction of histone gene transcription factor Hinfp sustains development in pre-implantation embryos. Developmental Biology, 2016, 419, 311-320.	2.0	13
48	Câ€ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higherâ€Order Chromatin Organization. Journal of Cellular Physiology, 2016, 231, 31-35.	4.1	50
49	RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1389-1397.	1.9	60
50	SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells. Genome Research, 2016, 26, 1188-1201.	5.5	90
51	Expression of Ribosomal RNA and Protein Genes in Human Embryonic Stem Cells Is Associated With the Activating H3K4me3 Histone Mark. Journal of Cellular Physiology, 2016, 231, 2007-2013.	4.1	13
52	Thyroid Hormone Receptor- \hat{l}^2 (TR \hat{l}^2) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer. Endocrinology, 2016, 157, 3278-3292.	2.8	26
53	Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Molecular and Cellular Biology, 2016, 36, 615-627.	2.3	53
54	MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells. Tumor Biology, 2016, 37, 8825-8839.	1.8	41

#	Article	IF	CITATIONS
55	Oncogenic epigenetic control. Aging, 2016, 8, 565-566.	3.1	2
56	A microRNA/Runx1/Runx2 network regulates prostate tumor progression from onset to adenocarcinoma in TRAMP mice. Oncotarget, 2016, 7, 70462-70474.	1.8	21
57	Antagonizing miR-218-5p attenuates Wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells. Oncotarget, 2016, 7, 79032-79046.	1.8	68
58	Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget, 2016, 7, 5094-5109.	1.8	89
59	The BRG1 chromatin remodeling enzyme links cancer cell metabolism and proliferation. Oncotarget, 2016, 7, 38270-38281.	1.8	51
60	Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biology, 2015, 16, 214.	8.8	206
61	Runx1 is associated with breast cancer progression in MMTVâ€PyMT transgenic mice and its depletion in vitro inhibits migration and invasion. Journal of Cellular Physiology, 2015, 230, 2522-2532.	4.1	63
62	The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. Journal of Cellular Physiology, 2015, 230, 2683-2694.	4.1	58
63	Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone, 2015, 81, 746-756.	2.9	93
64	Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells. BMC Genomics, 2015, 16, 309.	2.8	30
65	Subnuclear domain proteins in cancer cells support transcription factor RUNX2 functions in DNA damage response. Journal of Cell Science, 2015, 128, 728-40.	2.0	21
66	Targeting of Runx2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease. Cancer Research, 2015, 75, 1433-1444.	0.9	164
67	Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading. Journal of Cellular Physiology, 2015, 230, 440-448.	4.1	25
68	Could IncRNAs be the Missing Links in Control of Mesenchymal Stem Cell Differentiation?. Journal of Cellular Physiology, 2015, 230, 526-534.	4.1	72
69	Increased Serotonin Availability Contributes to Decreased Bone Density in Colitis. FASEB Journal, 2015, 29, 854.5.	0.5	0
70	The bone-specific Runx2-P1 promoter displays conserved three-dimensional chromatin structure with the syntenic Supt3h promoter. Nucleic Acids Research, 2014, 42, 10360-10372.	14.5	28
71	MicroRNAs in the control of metastatic bone disease. Trends in Endocrinology and Metabolism, 2014, 25, 320-327.	7.1	60
72	The Dynamic Architectural and Epigenetic Nuclear Landscape: Developing the Genomic Almanac of Biology and Disease. Journal of Cellular Physiology, 2014, 229, 711-727.	4.1	11

#	Article	IF	CITATIONS
73	Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?. Cancer Research, 2014, 74, 420-425.	0.9	33
74	hsa-mir-30c promotes the invasive phenotype of metastatic breast cancer cells by targeting NOV/CCN3. Cancer Cell International, 2014, 14, 73.	4.1	46
75	Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region. Gene, 2014, 550, 1-9.	2.2	28
76	The abbreviated pluripotent cell cycle. Journal of Cellular Physiology, 2013, 228, 9-20.	4.1	92
77	Redefining the activity of a bone-specific transcription factor: Novel insights for understanding bone formation. Journal of Bone and Mineral Research, 2013, 28, 2060-2063.	2.8	10
78	MicroRNA-34c Inversely Couples the Biological Functions of the Runt-related Transcription Factor RUNX2 and the Tumor Suppressor p53 in Osteosarcoma. Journal of Biological Chemistry, 2013, 288, 21307-21319.	3.4	95
79	MicroRNA control of bone formation and homeostasis. Nature Reviews Endocrinology, 2012, 8, 212-227.	9.6	503
80	Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nature Reviews Genetics, 2010, 11, 583-589.	16.3	142
81	Subnuclear Localization and Intranuclear Trafficking of Transcription Factors. Methods in Molecular Biology, 2010, 647, 77-93.	0.9	4
82	Control of the Human Pluripotent Cell Cycle. , 2010, , 235-251.		2
83	Co-stimulation of the Bone-related Runx2 P1 Promoter in Mesenchymal Cells by SP1 and ETS Transcription Factors at Polymorphic Purine-rich DNA Sequences (Y-repeats). Journal of Biological Chemistry, 2009, 284, 3125-3135.	3.4	70
84	Subnuclear targeting of the Runx3 tumor suppressor and its epigenetic association with mitotic chromosomes. Journal of Cellular Physiology, 2009, 218, 473-479.	4.1	40
85	Phenotypic transcription factors epigenetically mediate cell growth control. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6632-6637.	7.1	86
86	A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13906-13911.	7.1	503
87	The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar-organizing regions at mitotic chromosomes. Journal of Cell Science, 2008, 121, 3981-3990.	2.0	48
88	Synergistic regulation of the Runx2 P1 promoter in mesenchymal cells by a conserved HLH box and purineâ€rich elements (GAY motifs). FASEB Journal, 2008, 22, 782.17.	0.5	0
89	Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3189-3194.	7.1	152
90	Chromatin Remodeling by SWI/SNF Results in Nucleosome Mobilization to Preferential Positions in the Rat Osteocalcin Gene Promoter. Journal of Biological Chemistry, 2007, 282, 9445-9457.	3.4	27

#	Article	IF	Citations
91	Nuclear microenvironments in biological control and cancer. Nature Reviews Cancer, 2007, 7, 454-463.	28.4	144
92	Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature, 2007, 445, 442-446.	27.8	218
93	Networks and hubs for the transcriptional control of osteoblastogenesis. Reviews in Endocrine and Metabolic Disorders, 2006, 7, 1-16.	5.7	397
94	The dynamic organization of geneâ€regulatory machinery in nuclear microenvironments. EMBO Reports, 2005, 6, 128-133.	4.5	107
95	Architectural Organization of the Regulatory Machinery for Transcription, Replication, and Repair: Dynamic Temporal-Spatial Parameters of Cell Cycle Control., 2004, , 15-92.		0
96	Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Critical Reviews in Eukaryotic Gene Expression, 2004, 14, 1-41.	0.9	194
97	Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo. Journal of Cellular Physiology, 2003, 196, 301-311.	4.1	93
98	Runx2/Cbfa1 Functions: Diverse Regulation of Gene Transcription by Chromatin Remodeling and Co-Regulatory Protein Interactions. Connective Tissue Research, 2003, 44, 141-148.	2.3	56
99	Mitotic partitioning and selective reorganization of tissue-specific transcription factors in progeny cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14852-14857.	7.1	88
100	Runx2/Cbfa1 functions: diverse regulation of gene transcription by chromatin remodeling and co-regulatory protein interactions. Connective Tissue Research, 2003, 44 Suppl 1, 141-8.	2.3	20
101	Interaction of the 1α,25-dihydroxyvitamin D3 receptor at the distal promoter region of the bone-specific osteocalcin gene requires nucleosomal remodelling. Biochemical Journal, 2002, 363, 667-676.	3.7	37
102	Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts*. Journal of Cellular Biochemistry, 2002, 85, 112-122.	2.6	93
103	Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts*The contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health Journal of Cellular Biochemistry, 2002, 85, 112.	2.6	1
104	Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. Journal of Cellular Biochemistry, 2001, 80, 424-440.	2.6	177
105	Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts*., 2001, 80, 424.		2
106	Modified intranuclear organization of regulatory factors in human acute leukemias: Reversal after treatment., 2000, 77, 30-43.		10
107	Bone tissue specific transcriptional control. Cancer, 2000, 88, 2899-2902.	4.1	10
108	Leukemia-associated AML1/ETO (8;21) chromosomal translocation protein increases the cellular representation of PML bodies. Journal of Cellular Biochemistry, 2000, 79, 103-112.	2.6	22

#	Article	IF	CITATIONS
109	Subnuclear organization and trafficking of regulatory proteins: Implications for biological control and cancer. Journal of Cellular Biochemistry, 2000, 79, 84-92.	2.6	21
110	Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. Journal of Cellular Physiology, 2000, 184, 341-350.	4.1	236
111	Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. Journal of Cellular Physiology, 2000, 184, 341-350.	4.1	5
112	Developmental Regulation of Thyrotropin Receptor Gene Expression in the Fetal and Neonatal Rat Thyroid: Relation to Thyroid Morphology and to Thyroid-Specific Gene Expression. Endocrinology, 2000, 141, 340-345.	2.8	6
113	Transcriptional control within the three-dimensional context of nuclear architecture: Requirements for boundaries and direction. Journal of Cellular Biochemistry, 1999, 75, 24-31.	2.6	9
114	Nuclear structure/gene expression interrelationships. , 1999, 181, 240-250.		11
115	Osteocalcin gene promoter: Unlocking the secrets for regulation of osteoblast growth and differentiation., 1998, 72, 62-72.		112
116	Osteocalcin gene promoter: Unlocking the secrets for regulation of osteoblast growth and differentiation. Journal of Cellular Biochemistry, 1998, 72, 62-72.	2.6	4
117	Properties of blood-contacting surfaces of clinically implanted cardiac assist devices: Gene expression, matrix composition, and ultrastructural characterization of cellular linings. Journal of Cellular Biochemistry, 1995, 57, 557-573.	2.6	41
118	Molecular Approaches to the Characterization of Cell and Blood/Biomaterial Interactions. Journal of Cardiac Surgery, 1992, 7, 177-187.	0.7	19
119	Protein-DNA interactions at the H4-Site III upstream transcriptional element of a cell cycle regulated histone H4 gene: Differences in normal versus tumor cells. Journal of Cellular Biochemistry, 1992, 49, 93-110.	2.6	12
120	Acidic fibroblast growth factor modulates gene expression in the rat thyroid in vivo. Journal of Cellular Biochemistry, 1992, 50, 392-399.	2.6	8
121	Transcriptional element H4-site II of cell cycle regulated human H4 histone genes is a multipartite protein/DNA interaction site for factors HiNF-D, HiNF-M, and HiNF-P: Involvement of phosphorylation. Journal of Cellular Biochemistry, 1991, 46, 174-189.	2.6	51
122	Effect of caffeine on parameters of osteoblast growth and differentiation of a mineralized extracellular matrix in vitro. Journal of Bone and Mineral Research, 1991, 6, 1029-1036.	2.8	34
123	Effect of sodium warfarin on vitamin K-dependent proteins and skeletal development in the rat fetus. Journal of Bone and Mineral Research, 1990, 5, 885-894.	2.8	34