
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1765235/publications.pdf Version: 2024-02-01

IANE R LIAN

#	Article	IF	CITATIONS
1	A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proceedings of the United States of America, 2008, 105, 13906-13911.	7.1	503
2	MicroRNA control of bone formation and homeostasis. Nature Reviews Endocrinology, 2012, 8, 212-227.	9.6	503
3	Networks and hubs for the transcriptional control of osteoblastogenesis. Reviews in Endocrine and Metabolic Disorders, 2006, 7, 1-16.	5.7	397
4	Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. Journal of Cellular Physiology, 2000, 184, 341-350.	4.1	236
5	Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature, 2007, 445, 442-446.	27.8	218
6	Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biology, 2015, 16, 214.	8.8	206
7	tsRNA signatures in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8071-8076.	7.1	202
8	Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Critical Reviews in Eukaryotic Gene Expression, 2004, 14, 1-41.	0.9	194
9	Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. Journal of Cellular Biochemistry, 2001, 80, 424-440.	2.6	177
10	Targeting of Runx2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease. Cancer Research, 2015, 75, 1433-1444.	0.9	164
11	Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3189-3194.	7.1	152
12	Nuclear microenvironments in biological control and cancer. Nature Reviews Cancer, 2007, 7, 454-463.	28.4	144
13	Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nature Reviews Genetics, 2010, 11, 583-589.	16.3	142
14	Osteocalcin gene promoter: Unlocking the secrets for regulation of osteoblast growth and differentiation. , 1998, 72, 62-72.		112
15	The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics, 2017, 9, 919-931.	2.1	108
16	The dynamic organization of geneâ€regulatory machinery in nuclear microenvironments. EMBO Reports, 2005, 6, 128-133.	4.5	107
17	MicroRNA-34c Inversely Couples the Biological Functions of the Runt-related Transcription Factor RUNX2 and the Tumor Suppressor p53 in Osteosarcoma. Journal of Biological Chemistry, 2013, 288, 21307-21319.	3.4	95
18	Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts*. Journal of Cellular Biochemistry, 2002, 85, 112-122.	2.6	93

#	Article	IF	CITATIONS
19	Runx1/AML1 hematopoietic transcription factor contributes to skeletal development in vivo. Journal of Cellular Physiology, 2003, 196, 301-311.	4.1	93
20	Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone, 2015, 81, 746-756.	2.9	93
21	The abbreviated pluripotent cell cycle. Journal of Cellular Physiology, 2013, 228, 9-20.	4.1	92
22	SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells. Genome Research, 2016, 26, 1188-1201.	5.5	90
23	Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget, 2016, 7, 5094-5109.	1.8	89
24	Mitotic partitioning and selective reorganization of tissue-specific transcription factors in progeny cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14852-14857.	7.1	88
25	Phenotypic transcription factors epigenetically mediate cell growth control. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6632-6637.	7.1	86
26	Synovium-Derived MicroRNAs Regulate Bone Pathways in Rheumatoid Arthritis. Journal of Bone and Mineral Research, 2017, 32, 461-472.	2.8	85
27	Epithelialâ€ŧoâ€mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. Journal of Cellular Physiology, 2018, 233, 9136-9144.	4.1	80
28	Could IncRNAs be the Missing Links in Control of Mesenchymal Stem Cell Differentiation?. Journal of Cellular Physiology, 2015, 230, 526-534.	4.1	72
29	Co-stimulation of the Bone-related Runx2 P1 Promoter in Mesenchymal Cells by SP1 and ETS Transcription Factors at Polymorphic Purine-rich DNA Sequences (Y-repeats). Journal of Biological Chemistry, 2009, 284, 3125-3135.	3.4	70
30	Antagonizing miR-218-5p attenuates Wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells. Oncotarget, 2016, 7, 79032-79046.	1.8	68
31	Runx1 is associated with breast cancer progression in MMTVâ€PyMT transgenic mice and its depletion in vitro inhibits migration and invasion. Journal of Cellular Physiology, 2015, 230, 2522-2532.	4.1	63
32	MicroRNAs in the control of metastatic bone disease. Trends in Endocrinology and Metabolism, 2014, 25, 320-327.	7.1	60
33	RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1389-1397.	1.9	60
34	The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. Journal of Cellular Physiology, 2015, 230, 2683-2694.	4.1	58
35	Runx2/Cbfa1 Functions: Diverse Regulation of Gene Transcription by Chromatin Remodeling and Co-Regulatory Protein Interactions. Connective Tissue Research, 2003, 44, 141-148.	2.3	56
36	Chromatin dynamics regulate mesenchymal stem cell lineage specification and differentiation to osteogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 438-449.	1.9	55

#	Article	IF	CITATIONS
37	Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Molecular and Cellular Biology, 2016, 36, 615-627.	2.3	53
38	Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget, 2017, 8, 17610-17627.	1.8	53
39	Transcriptional element H4-site II of cell cycle regulated human H4 histone genes is a multipartite protein/DNA interaction site for factors HiNF-D, HiNF-M, and HiNF-P: Involvement of phosphorylation. Journal of Cellular Biochemistry, 1991, 46, 174-189.	2.6	51
40	The BRG1 chromatin remodeling enzyme links cancer cell metabolism and proliferation. Oncotarget, 2016, 7, 38270-38281.	1.8	51
41	Câ€ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higherâ€Order Chromatin Organization. Journal of Cellular Physiology, 2016, 231, 31-35.	4.1	50
42	The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar-organizing regions at mitotic chromosomes. Journal of Cell Science, 2008, 121, 3981-3990.	2.0	48
43	Suppression of Breast Cancer Stem Cells and Tumor Growth by the RUNX1 Transcription Factor. Molecular Cancer Research, 2018, 16, 1952-1964.	3.4	48
44	RUNX1â€dependent mechanisms in biological control and dysregulation in cancer. Journal of Cellular Physiology, 2019, 234, 8597-8609.	4.1	48
45	ldentification of tRNAâ€derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer. Journal of Cellular Physiology, 2020, 235, 5318-5327.	4.1	48
46	hsa-mir-30c promotes the invasive phenotype of metastatic breast cancer cells by targeting NOV/CCN3. Cancer Cell International, 2014, 14, 73.	4.1	46
47	Regulation of Bone Metabolism by Serotonin. Advances in Experimental Medicine and Biology, 2017, 1033, 35-46.	1.6	46
48	Runx2/DICER/miRNA Pathway in Regulating Osteogenesis. Journal of Cellular Physiology, 2017, 232, 182-191.	4.1	45
49	Bivalent Epigenetic Control of Oncofetal Gene Expression in Cancer. Molecular and Cellular Biology, 2017, 37, .	2.3	42
50	Properties of blood-contacting surfaces of clinically implanted cardiac assist devices: Gene expression, matrix composition, and ultrastructural characterization of cellular linings. Journal of Cellular Biochemistry, 1995, 57, 557-573.	2.6	41
51	MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple-negative MDA-MB-231 human breast cancer cells. Tumor Biology, 2016, 37, 8825-8839.	1.8	41
52	Subnuclear targeting of the Runx3 tumor suppressor and its epigenetic association with mitotic chromosomes. Journal of Cellular Physiology, 2009, 218, 473-479.	4.1	40
53	Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. Journal of Cellular Biochemistry, 2016, 117, 9-19.	2.6	39
54	Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages. Journal of Cellular Physiology, 2016, 231, 1090-1096.	4.1	38

#	Article	IF	CITATIONS
55	Interaction of the $1\hat{l}$ ±,25-dihydroxyvitamin D3 receptor at the distal promoter region of the bone-specific osteocalcin gene requires nucleosomal remodelling. Biochemical Journal, 2002, 363, 667-676.	3.7	37
56	Effect of sodium warfarin on vitamin K-dependent proteins and skeletal development in the rat fetus. Journal of Bone and Mineral Research, 1990, 5, 885-894.	2.8	34
57	Effect of caffeine on parameters of osteoblast growth and differentiation of a mineralized extracellular matrix in vitro. Journal of Bone and Mineral Research, 1991, 6, 1029-1036.	2.8	34
58	RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. Journal of Cellular Physiology, 2020, 235, 7261-7272.	4.1	34
59	Bookmarking Target Genes in Mitosis: A Shared Epigenetic Trait of Phenotypic Transcription Factors and Oncogenes?. Cancer Research, 2014, 74, 420-425.	0.9	33
60	Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells. BMC Genomics, 2015, 16, 309.	2.8	30
61	Development of a predictive miRNA signature for breast cancer risk among high-risk women. Oncotarget, 2017, 8, 112170-112183.	1.8	30
62	Participation of integrin \hat{l}^2 3 in osteoblast differentiation induced by titanium with nano or microtopography. Journal of Biomedical Materials Research - Part A, 2019, 107, 1303-1313.	4.0	29
63	The bone-specific Runx2-P1 promoter displays conserved three-dimensional chromatin structure with the syntenic Supt3h promoter. Nucleic Acids Research, 2014, 42, 10360-10372.	14.5	28
64	Epigenetic landscape during osteoblastogenesis defines a differentiation-dependent Runx2 promoter region. Gene, 2014, 550, 1-9.	2.2	28
65	Chromatin Remodeling by SWI/SNF Results in Nucleosome Mobilization to Preferential Positions in the Rat Osteocalcin Gene Promoter. Journal of Biological Chemistry, 2007, 282, 9445-9457.	3.4	27
66	Loss of RUNX1 is associated with aggressive lung adenocarcinomas. Journal of Cellular Physiology, 2018, 233, 3487-3497.	4.1	27
67	Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer. Endocrinology, 2016, 157, 3278-3292.	2.8	26
68	Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading. Journal of Cellular Physiology, 2015, 230, 440-448.	4.1	25
69	Oncofetal Epigenetic Bivalency in Breast Cancer Cells: H3K4 and H3K27 Tri-Methylation as a Biomarker for Phenotypic Plasticity. Journal of Cellular Physiology, 2016, 231, 2474-2481.	4.1	25
70	Ethanol Extract of <i>Cissus quadrangularis</i> Enhances Osteoblast Differentiation and Mineralization of Murine Pre-Osteoblastic MC3T3-E1 Cells. Journal of Cellular Physiology, 2017, 232, 540-547.	4.1	25
71	The connection between BRG1, CTCF and topoisomerases at TAD boundaries. Nucleus, 2017, 8, 150-155.	2.2	24
72	Leukemia-associated AML1/ETO (8;21) chromosomal translocation protein increases the cellular representation of PML bodies. Journal of Cellular Biochemistry, 2000, 79, 103-112.	2.6	22

#	Article	IF	CITATIONS
73	Subnuclear organization and trafficking of regulatory proteins: Implications for biological control and cancer. Journal of Cellular Biochemistry, 2000, 79, 84-92.	2.6	21
74	Subnuclear domain proteins in cancer cells support transcription factor RUNX2 functions in DNA damage response. Journal of Cell Science, 2015, 128, 728-40.	2.0	21
75	Transient RUNX1 Expression during Early Mesendodermal Differentiation ofÂhESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling. Stem Cell Reports, 2016, 7, 884-896.	4.8	21
76	Regulation of osteogenesis by long noncoding RNAs: An epigenetic mechanism contributing to bone formation. Connective Tissue Research, 2018, 59, 35-41.	2.3	21
77	A microRNA/Runx1/Runx2 network regulates prostate tumor progression from onset to adenocarcinoma in TRAMP mice. Oncotarget, 2016, 7, 70462-70474.	1.8	21
78	Runx2/Cbfa1 functions: diverse regulation of gene transcription by chromatin remodeling and co-regulatory protein interactions. Connective Tissue Research, 2003, 44 Suppl 1, 141-8.	2.3	20
79	Molecular Approaches to the Characterization of Cell and Blood/Biomaterial Interactions. Journal of Cardiac Surgery, 1992, 7, 177-187.	0.7	19
80	Identifying Nuclear Matrixâ€Attached DNA Across the Genome. Journal of Cellular Physiology, 2017, 232, 1295-1305.	4.1	19
81	Mitotic Gene Bookmarking: An Epigenetic Program to Maintain Normal and Cancer Phenotypes. Molecular Cancer Research, 2018, 16, 1617-1624.	3.4	19
82	Thyroid Hormone Receptor β Suppression of RUNX2 Is Mediated by Brahma-Related Gene 1–Dependent Chromatin Remodeling. Endocrinology, 2018, 159, 2484-2494.	2.8	15
83	Mll OMPASS complexes mediate H3K4me3 enrichment and transcription of the osteoblast master gene Runx2/p57 in osteoblasts. Journal of Cellular Physiology, 2019, 234, 6244-6253.	4.1	15
84	The Thyroid Hormone Receptor-RUNX2 Axis: A Novel Tumor Suppressive Pathway in Breast Cancer. Hormones and Cancer, 2020, 11, 34-41.	4.9	15
85	Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth. Advances in Experimental Medicine and Biology, 2017, 962, 95-102.	1.6	14
86	Maternal expression and early induction of histone gene transcription factor Hinfp sustains development in pre-implantation embryos. Developmental Biology, 2016, 419, 311-320.	2.0	13
87	Expression of Ribosomal RNA and Protein Genes in Human Embryonic Stem Cells Is Associated With the Activating H3K4me3 Histone Mark. Journal of Cellular Physiology, 2016, 231, 2007-2013.	4.1	13
88	Osteogenic potential of hexane and dichloromethane fraction of Cissus quadrangularis on murine preosteoblast cell line MC3T3â€E1 (subclone 4). Journal of Cellular Physiology, 2019, 234, 23082-23096.	4.1	13
89	Protein-DNA interactions at the H4-Site III upstream transcriptional element of a cell cycle regulated histone H4 gene: Differences in normal versus tumor cells. Journal of Cellular Biochemistry, 1992, 49, 93-110.	2.6	12

90 Nuclear structure/gene expression interrelationships. , 1999, 181, 240-250.

#	Article	IF	CITATIONS
91	The Dynamic Architectural and Epigenetic Nuclear Landscape: Developing the Genomic Almanac of Biology and Disease. Journal of Cellular Physiology, 2014, 229, 711-727.	4.1	11
92	Ethyl acetate and nâ€butanol fraction of <i>Cissus quadrangularis</i> promotes the mineralization potential of murine preâ€osteoblast cell line MC3T3â€E1 (subâ€clone 4). Journal of Cellular Physiology, 2019, 234, 10300-10314.	4.1	11
93	Modified intranuclear organization of regulatory factors in human acute leukemias: Reversal after treatment. , 2000, 77, 30-43.		10
94	Bone tissue specific transcriptional control. Cancer, 2000, 88, 2899-2902.	4.1	10
95	Redefining the activity of a bone-specific transcription factor: Novel insights for understanding bone formation. Journal of Bone and Mineral Research, 2013, 28, 2060-2063.	2.8	10
96	Dissection of Individual Prostate Lobes in Mouse Models of Prostate Cancer to Obtain High Quality RNA. Journal of Cellular Physiology, 2017, 232, 14-18.	4.1	10
97	Genome-wide DNase hypersensitivity, and occupancy of RUNX2 and CTCF reveal a highly dynamic gene regulome during MC3T3 pre-osteoblast differentiation. PLoS ONE, 2017, 12, e0188056.	2.5	10
98	Nuclear organization mediates cancer-compromised genetic and epigenetic control. Advances in Biological Regulation, 2018, 69, 1-10.	2.3	10
99	Switches in histone modifications epigenetically control vitamin D3â€dependent transcriptional upregulation of the CYP24A1 gene in osteoblastic cells. Journal of Cellular Physiology, 2020, 235, 5328-5339.	4.1	10
100	Transcriptional control within the three-dimensional context of nuclear architecture: Requirements for boundaries and direction. Journal of Cellular Biochemistry, 1999, 75, 24-31.	2.6	9
101	Towards a more precise and individualized assessment of breast cancer risk. Aging, 2019, 11, 1305-1316.	3.1	9
102	Acidic fibroblast growth factor modulates gene expression in the rat thyroid in vivo. Journal of Cellular Biochemistry, 1992, 50, 392-399.	2.6	8
103	Nanoparticleâ€based targeted cancer strategies for nonâ€invasive prostate cancer intervention. Journal of Cellular Physiology, 2018, 233, 6408-6417.	4.1	8
104	Inhibition of the RUNX1-CBFβ transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking. Oncotarget, 2020, 11, 2512-2530.	1.8	8
105	Ezh2â€dependent H3K27me3 modification dynamically regulates vitamin D3â€dependent epigenetic control of CYP24A1 gene expression in osteoblastic cells. Journal of Cellular Physiology, 2020, 235, 5404-5412.	4.1	6
106	Developmental Regulation of Thyrotropin Receptor Gene Expression in the Fetal and Neonatal Rat Thyroid: Relation to Thyroid Morphology and to Thyroid-Specific Gene Expression. Endocrinology, 2000, 141, 340-345.	2.8	6
107	Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. Journal of Cellular Physiology, 2000, 184, 341-350.	4.1	5
108	Subnuclear Localization and Intranuclear Trafficking of Transcription Factors. Methods in Molecular Biology, 2010, 647, 77-93.	0.9	4

#	Article	IF	CITATIONS
109	Hypoxiaâ€inducible factor 2α is a novel inhibitor of chondrocyte maturation. Journal of Cellular Physiology, 2021, 236, 6963-6973.	4.1	4
110	Osteocalcin gene promoter: Unlocking the secrets for regulation of osteoblast growth and differentiation. Journal of Cellular Biochemistry, 1998, 72, 62-72.	2.6	4
111	LncMIR181A1HG is a novel chromatin-bound epigenetic suppressor of early stage osteogenic lineage commitment. Scientific Reports, 2022, 12, 7770.	3.3	4
112	Aneurysmal bone cysts and pathologic fracture associated with supernumerary ring chromosome 6 in two unrelated patients. American Journal of Medical Genetics, Part A, 2017, 173, 3205-3210.	1.2	3
113	Unique Regulatory Mechanisms for the Human Embryonic Stem Cell Cycle. Journal of Cellular Physiology, 2017, 232, 1254-1257.	4.1	3
114	Precocious Phenotypic Transcriptionâ€Factor Expression During Early Development. Journal of Cellular Biochemistry, 2017, 118, 953-958.	2.6	3
115	Bioactivity-Guided Isolation and Identification of Anti-adipogenic Constituents from the n-Butanol Fraction of Cissus quadrangularis. Critical Reviews in Eukaryotic Gene Expression, 2020, 30, 519-541.	0.9	3
116	Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts*. , 2001, 80, 424.		2
117	Control of the Human Pluripotent Cell Cycle. , 2010, , 235-251.		2
118	Oncogenic epigenetic control. Aging, 2016, 8, 565-566.	3.1	2
119	Sustained Morphine Delivery Suppresses Bone Formation and Alters Metabolic and Circulating miRNA Profiles in Mice. Journal of the Endocrine Society, 2021, 5, A239-A240.	0.2	1
120	Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts*The contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health Journal of Cellular Biochemistry, 2002, 85, 112.	2.6	1
121	Architectural Organization of the Regulatory Machinery for Transcription, Replication, and Repair: Dynamic Temporal-Spatial Parameters of Cell Cycle Control. , 2004, , 15-92.		0
122	Synergistic regulation of the Runx2 P1 promoter in mesenchymal cells by a conserved HLH box and purineâ€rich elements (GAY motifs). FASEB Journal, 2008, 22, 782.17.	0.5	0
123	Increased Serotonin Availability Contributes to Decreased Bone Density in Colitis. FASEB Journal, 2015, 29, 854.5.	0.5	0