Jinwei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1765038/publications.pdf

Version: 2024-02-01

70 papers 2,885 citations

28 h-index 50 g-index

80 all docs 80 docs citations

80 times ranked 3453 citing authors

#	Article	IF	CITATIONS
1	Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nature Medicine, 2017, 23, 997-1003.	15.2	256
2	The WNK-SPAK/OSR1 pathway: Master regulator of cation-chloride cotransporters. Science Signaling, 2014, 7, re3.	1.6	218
3	Binding to serine 65â€phosphorylated ubiquitin primes Parkin for optimal <scp>PINK</scp> 1â€dependent phosphorylation and activation. EMBO Reports, 2015, 16, 939-954.	2.0	183
4	The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+–ClⰠco-transporters. Biochemical Journal, 2014, 458, 559-573.	1.7	174
5	WNK Kinase Signaling in Ion Homeostasis and Human Disease. Cell Metabolism, 2017, 25, 285-299.	7.2	160
6	GSK2578215A; A potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5625-5629.	1.0	138
7	WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons. Science Signaling, 2015, 8, ra65.	1.6	133
8	Brain Penetrant LRRK2 Inhibitor. ACS Medicinal Chemistry Letters, 2012, 3, 658-662.	1.3	119
9	GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Clâ^'-sensitive WNK1 kinase. Nature Communications, 2017, 8, 1776.	5.8	81
10	Characterization of TAE684 as a potent LRRK2 kinase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1864-1869.	1.0	80
11	Characterisation of the Cullinâ€3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Molecular Medicine, 2015, 7, 1285-1306.	3.3	79
12	Purification and Characterization of a Cold-Adapted α-Amylase Produced by Nocardiopsis sp. 7326 Isolated from Prydz Bay, Antarctic. Marine Biotechnology, 2008, 10, 75-82.	1.1	70
13	Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Human Molecular Genetics, 2013, 22, 328-344.	1.4	70
14	Modulation of brain cation-Clâ^' cotransport via the SPAK kinase inhibitor ZT-1a. Nature Communications, 2020, 11, 78.	5.8	69
15	Molecular Cloning and Expression of a Cold-Adapted Lipase Gene from an Antarctic Deep Sea Psychrotrophic Bacterium Pseudomonas sp. 7323. Marine Biotechnology, 2008, 10, 612-621.	1.1	66
16	Impaired regulation of KCC2 phosphorylation leads to neuronal network dysfunction and neurodevelopmental pathology. Science Signaling, 2019, 12 , .	1.6	66
17	Mutations in Chromatin Modifier and Ephrin Signaling Genes in Vein of Galen Malformation. Neuron, 2019, 101, 429-443.e4.	3.8	56
18	Developmentally regulated KCC2 phosphorylation is essential for dynamic GABA-mediated inhibition and survival. Science Signaling, 2019, 12, .	1.6	55

#	Article	IF	Citations
19	Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp 7195. Journal of Microbiology and Biotechnology, 2007, 17, 604-10.	0.9	52
20	Discovery of a Pyrrolopyrimidine (JH-II-127), a Highly Potent, Selective, and Brain Penetrant LRRK2 Inhibitor. ACS Medicinal Chemistry Letters, 2015, 6, 584-589.	1.3	46
21	Peripheral motor neuropathy is associated with defective kinase regulation of the KCC3 cotransporter. Science Signaling, 2016, 9, ra77.	1.6	46
22	Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. European Journal of Medicinal Chemistry, 2013, 70, 758-767.	2.6	45
23	Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism. Molecular Psychiatry, 2021, 26, 7582-7595.	4.1	45
24	Structural and Atropisomeric Factors Governing the Selectivity of Pyrimido-benzodiazipinones as Inhibitors of Kinases and Bromodomains. ACS Chemical Biology, 2018, 13, 2438-2448.	1.6	44
25	Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition. Science Signaling, 2016, 9, ra32.	1.6	43
26	Functional kinomics establishes a critical node of volume-sensitive cation-Clâ° cotransporter regulation in the mammalian brain. Scientific Reports, 2016, 6, 35986.	1.6	38
27	The WNK-SPAK/OSR1 Kinases and the Cation-Chloride Cotransporters as Therapeutic Targets for Neurological Diseases. , 2019, 10, 626.		35
28	Critical role of the SPAK protein kinase CCT domain in controlling blood pressure. Human Molecular Genetics, 2015, 24, 4545-4558.	1.4	34
29	Enhanced Electricity Production by Use of Reconstituted Artificial Consortia of Estuarine Bacteria Grown as Biofilms. Environmental Science & Technology, 2012, 46, 2984-2992.	4.6	31
30	Crossing the Chloride Channel: The Current and Potential Therapeutic Value of the Neuronal K ⁺ -Cl ⁻ Cotransporter KCC2. BioMed Research International, 2019, 2019, 1-12.	0.9	27
31	MALDI-TOF Mass Spectrometry Discriminates Known Species and Marine Environmental Isolates of Pseudoalteromonas. Frontiers in Microbiology, 2016, 7, 104.	1.5	23
32	Regulatory control of the Na–Cl co-transporter NCC and its therapeutic potential for hypertension. Acta Pharmaceutica Sinica B, 2021, 11, 1117-1128.	5.7	23
33	Development of an enzyme-linked immunosorbent assay for detection of cellular and in vivo LRRK2 S935 phosphorylation. Journal of Pharmaceutical and Biomedical Analysis, 2013, 76, 49-58.	1.4	21
34	The adipocyte hormone leptin sets the emergence of hippocampal inhibition in mice. ELife, $2018, 7,$	2.8	20
35	Psychrotrophic amylolytic bacteria from deep sea sediment of Prydz Bay, Antarctic: diversity and characterization of amylases. World Journal of Microbiology and Biotechnology, 2007, 23, 1551-1557.	1.7	19
36	WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension. Acta Pharmacologica Sinica, 2021, 42, 508-517.	2.8	19

#	Article	IF	CITATIONS
37	Leveraging unique structural characteristics of WNK kinases to achieve therapeutic inhibition. Science Signaling, 2016, 9, e3.	1.6	17
38	Enhanced eicosapentaenoic acid production by a new deep-sea marine bacterium Shewanella electrodiphila MAR441T. PLoS ONE, 2017, 12, e0188081.	1.1	17
39	Role of SPAK–NKCC1 signaling cascade in the choroid plexus blood–CSF barrier damage after stroke. Journal of Neuroinflammation, 2022, 19, 91.	3.1	15
40	Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Expert Opinion on Therapeutic Targets, 2017, 21, 795-804.	1.5	14
41	Staurosporine and NEM mainly impair WNK-SPAK/OSR1 mediated phosphorylation of KCC2 and NKCC1. PLoS ONE, 2020, 15, e0232967.	1.1	14
42	Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. International Journal of Molecular Sciences, 2021, 22, 1232.	1.8	13
43	Shewanella electrodiphila sp. nov., a psychrotolerant bacterium isolated from Mid-Atlantic Ridge deep-sea sediments. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2882-2889.	0.8	12
44	Role of KLHL3 and dietary K ⁺ in regulating KS-WNK1 expression. American Journal of Physiology - Renal Physiology, 2021, 320, F734-F747.	1.3	11
45	Molecular cloning and expression of an extracellular α-amylase gene from an Antarctic deep sea psychrotolerant Pseudomonas stutzeri strain 7193. World Journal of Microbiology and Biotechnology, 2011, 27, 841-850.	1.7	8
46	Smoothened receptor Signaling regulates the developmental shift of GABA polarity in rat somatosensory cortex. Journal of Cell Science, 2020, 133, .	1.2	8
47	Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease. Cells, 2020, 9, 2293.	1.8	7
48	The Therapeutic Potential of Neuronal K-Cl Co-Transporter KCC2 in Huntington's Disease and Its Comorbidities. International Journal of Molecular Sciences, 2020, 21, 9142.	1.8	6
49	Furosemide prevents membrane KCC2 downregulation during convulsant stimulation in the hippocampus. IBRO Neuroscience Reports, 2022, 12, 355-365.	0.7	6
50	New drugs on the horizon for cerebral edema: what $\hat{a} \in \mathbb{N}$ in the clinical development pipeline?. Expert Opinion on Investigational Drugs, 2020, 29, 1099-1105.	1.9	5
51	NF-κB Signaling-Mediated Activation of WNK-SPAK-NKCC1 Cascade in Worsened Stroke Outcomes of Ang Il–Hypertensive Mice. Stroke, 2022, 53, 1720-1734.	1.0	5
52	Rare pathogenic variants in WNK3 cause X-linked intellectual disability. Genetics in Medicine, 2022, 24, 1941-1951.	1.1	5
53	Editorial: Marine Microbial-Derived Molecules and Their Potential Medical and Cosmetic Applications. Frontiers in Microbiology, 2021, 12, 706152.	1.5	4
54	Role of the cation-chloride-cotransporters in the circadian system. Asian Journal of Pharmaceutical Sciences, 2021, 16, 589-597.	4.3	4

#	Article	IF	Citations
55	<i>Porphyromonas Gingivalis</i> in the Pathogenesis of Alzheimer's Disease and Its Therapeutic Target. Journal of Exploratory Research in Pharmacology, 2022, 7, 45-53.	0.2	4
56	Sequence and structural variations determining the recruitment of WNK kinases to the KLHL3 E3 ligase. Biochemical Journal, 2022, 479, 661-675.	1.7	4
57	Molecular Mechanism of Inhibiting WNK Binding to OSR1 by Targeting the Allosteric Pocket of the OSR1-CCT Domain with Potential Antihypertensive Inhibitors: An In Silico Study. Journal of Physical Chemistry B, 2021, 125, 9115-9129.	1,2	3
58	The Chloride Homeostasis of CA3 Hippocampal Neurons Is Not Altered in Fully Symptomatic Mepc2-null Mice. Frontiers in Cellular Neuroscience, 2021, 15, 724976.	1.8	2
59	Protein Kinase C-Mediated Hyperphosphorylation and Lateralization of Connexin 43 Are Involved in Autoimmune Myocarditis-Induced Prolongation of QRS Complex. Frontiers in Physiology, 2022, 13, 815301.	1.3	2
60	166 TLR-4-Regulated Cerebrospinal Fluid Hypersecretion in Post-Hemorrhagic Hydrocephalus. Neurosurgery, 2017, 64, 242.	0.6	1
61	LRRK2 Signalling Pathways in Parkinson's Disease. Archives in Neurology & Neuroscience, 2019, 2, .	0.1	1
62	Shewanella dovemarinesis sp. nov., a psychrotolerant bacterium isolated from Mid-Atlantic Ridge deep-sea sediments. International Journal of Systematic and Evolutionary Microbiology, 2014, , .	0.8	0
63	Ronald R. Tasker Young Investigator Award 165â€fPromoting Endogenous GABAergic Analgesia via Kinase Modulation of Neuronal Ion Plasticity. Neurosurgery, 2014, 61, 214.	0.6	0
64	Abstract P70: SPAK/OSR1 Signaling as a Novel Target for Post-Stroke Oxidative Stress Brain Injury. Stroke, 2021, 52, .	1.0	0
65	SPAK/OSR1 kinases directly phosphorylate the K + â€Cl ―coâ€ŧransporters (1109.7). FASEB Journal, 2014, 28, 1109.7.	0.2	0
66	Bone loss in KLHL3 knock-in mice characterized by a pseudohypoaldosteronism type II-like phenotype is mediated by renal PTH resistance. Bone Abstracts, 0 , , .	0.0	0
67	Bone loss in KLHL3 knock-in mice characterized by a pseudohypoaldosteronism type II-like phenotype is mediated by renal PTH resistance. Bone Abstracts, 0, , .	0.0	0
68	Abstract P198: WNK-SPAK-NKCC1 Cascade Activation Contributes to Worsened Brain Damage in Mice With Hypertension Co-Morbidity after Ischemic Stroke. Hypertension, 2018, 72, .	1.3	0
69	Neuroprotective therapy both for acute ischemic stroke and ALS. Journal of Neurology & Neurophysiology, 2019, 10, .	0.1	0
70	374 Multi-omic Analysis Identifies a SPAK Kinase-regulated Ensemble of Choroid Plexus Ion Transport Proteins Relevant for Post-infectious Hydrocephalus. Neurosurgery, 2022, 68, 89-89.	0.6	0