Giovanni Indiveri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1764925/publications.pdf Version: 2024-02-01

CIOVANNI INDIVERI

#	Article	IF	CITATIONS
1	Modeling and identification of open-frame variable configuration unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 2000, 25, 227-240.	3.8	197
2	Swedish Wheeled Omnidirectional Mobile Robots: Kinematics Analysis and Control. IEEE Transactions on Robotics, 2009, 25, 164-171.	10.3	107
3	The Null-Space-based Behavioral Control for Mobile Robots with Velocity Actuator Saturations. International Journal of Robotics Research, 2010, 29, 1317-1337.	8.5	49
4	Dexterous Underwater Manipulation from Onshore Locations: Streamlining Efficiencies for Remotely Operated Underwater Vehicles. IEEE Robotics and Automation Magazine, 2018, 25, 24-33.	2.0	44
5	Underwater localization using single beacon measurements: Observability analysis for a double integrator system. Ocean Engineering, 2017, 142, 650-665.	4.3	34
6	Single Range Localization in 3-D: Observability and Robustness Issues. IEEE Transactions on Control Systems Technology, 2016, 24, 1853-1860.	5.2	31
7	Research, robots, and reality: A statement on current trends in biorobotics. Behavioral and Brain Sciences, 2001, 24, 1072-1073.	0.7	30
8	Underwater Intervention Robotics: An Outline of the Italian National Project MARIS. Marine Technology Society Journal, 2016, 50, 98-107.	0.4	28
9	High Speed Differential Drive Mobile Robot Path Following Control With Bounded Wheel Speed Commands. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	27
10	Prioritized closed-loop inverse kinematic algorithms for redundant robotic systems with velocity saturations. , 2009, , .		27
11	Advanced ROV Autonomy for Efficient Remote Control in the DexROV Project. Marine Technology Society Journal, 2016, 50, 67-80.	0.4	25
12	Widely Scalable Mobile Underwater Sonar Technology: An Overview of the H2020 WiMUST Project. Marine Technology Society Journal, 2016, 50, 42-53.	0.4	25
13	WiMUST: A cooperative marine robotic system for autonomous geotechnical surveys. Journal of Field Robotics, 2021, 38, 268-288.	6.0	25
14	Line following guidance control: Application to the Charlie unmanned surface vehicle. , 2008, , .		24
15	MARIS: A national project on marine robotics for interventions. , 2014, , .		22
16	Output outlier robust state estimation. International Journal of Adaptive Control and Signal Processing, 2017, 31, 581-607.	4.1	22
17	An application of mobile robotics for olfactory monitoring of hazardous industrial sites. Industrial Robot, 2009, 36, 51-59.	2.1	20
18	The CO ³ AUVs (Cooperative Cognitive Control for Autonomous Underwater) Tj ETQq0	0 0 rgBT /0	verlock 10 Tf

2

18

GIOVANNI INDIVERI

#	Article	IF	CITATIONS
19	An Entropy-Like Estimator for Robust Parameter Identification. Entropy, 2009, 11, 560-585.	2.2	19
20	The widely scalable Mobile Underwater Sonar Technology (WiMUST) project: An overview. , 2015, , .		19
21	Experimental validation of the modeling and control of a multibody underwater vehicle manipulator system for sea mining exploration. Journal of Field Robotics, 2021, 38, 171-191.	6.0	16
22	Cluster growth with long-range interactions. Thin Solid Films, 1996, 284-285, 106-109.	1.8	14
23	Motion Control of Swedish Wheeled Mobile Robots in the Presence of Actuator Saturation. Lecture Notes in Computer Science, 2007, , 35-46.	1.3	14
24	Relative Pose Observability Analysis for 3D Nonholonomic Vehicles Based on Range Measurements Only. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 182-187.	0.4	12
25	A fully automated approach for underwater mosaicking. , 2006, , .		11
26	Fixed Target 3D Localization Based on Range Data Only: a Recursive Least Squares Approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 140-145.	0.4	11
27	Single range observability for cooperative underactuated underwater vehicles IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 5127-5138.	0.4	11
28	Single range observability for cooperative underactuated underwater vehicles. Annual Reviews in Control, 2015, 40, 129-141.	7.9	11
29	The Null-Space based Behavioral control for a team of cooperative mobile robots with actuator saturations. , 2009, , .		10
30	Kinematics Motion Control of an Underactuated Vehicle: a 3D Solution with Bounded Control Effort. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 73-78.	0.4	9
31	RANSAC-LEL: An optimized version with least entropy like estimators. , 2011, , .		9
32	Complementary Control of the Depth of an Underwater Robot. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 8971-8976.	0.4	8
33	A motion planning algorithm for smooth paths of bounded curvature and curvature derivative. , 2009, , .		7
34	An Entropy-like approach to vision based autonomous navigation. , 2011, , .		7
35	Geophysical Surveying with Marine Networked Mobile Robotic Systems. , 2014, , .		7
36	Morphologies in two-dimensional growth with attractive long-range interactions. Physica A: Statistical Mechanics and Its Applications, 1999, 273, 217-230.	2.6	6

GIOVANNI INDIVERI

#	Article	IF	CITATIONS
37	Switching linear path following for bounded curvature car-like vehicles. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 185-190.	0.4	6
38	The Null-Space based Behavioral control for non-holonomic mobile robots with actuators velocity saturation. , 2009, , .		6
39	A Null-Space-Based Behavioral Approach to Single Range Underwater Positioningâ^—â^—This work was partially supported by the European Union' Horizon 2020 research and innovation programme under the project WiMUST: Widely scalable Mobile Underwater Sonar Technology, grant agreement N°645141 (call H2020 ICT-23-2014 Robotics) IFAC-PapersOnLine. 2015. 48. 55-60.	0.9	5
40	Dynamic Modeling of Underwater Multi-Hull Vehicles. Robotica, 2020, 38, 1682-1702.	1.9	5
41	A Proof of Concept for the Guidance of 3D Underactuated Vehicles Subject to Constant Unknown Disturbances. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 307-312.	0.4	4
42	Overview and first year progress of the Widely scalable Mobile Underwater Sonar Technology H2O2O project**This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 645141 (WiMUST project, http://www.wimust.eu) IFAC-PapersOnLine, 2016, 49, 430-433.	0.9	4
43	Complementary control for robots with actuator redundancy: an underwater vehicle application. Robotica, 2017, 35, 206-223.	1.9	4
44	Outlier Robust State Estimation Through Smoothing on a Sliding Window. IFAC-PapersOnLine, 2020, 53, 14636-14641.	0.9	4
45	Control oriented modeling of a twin thruster autonomous surface vehicle. Ocean Engineering, 2022, 243, 110260.	4.3	4
46	An omni-vision based self-localization method for soccer robot. , 0, , .		3
47	A switching path following controller for an underactuated marine vehicle. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 489-496.	0.4	3
48	DC Motor Control Issues for UUVs. , 2006, , .		3
49	Task Based Kinematical Robot Control in the Presence of Actuator Velocity Saturation and Its Application to Trajectory Tracking for an Omni-wheeled Mobile Robot. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	3
50	Underwater vehicle guidance control design within the DexROV project: preliminary results. IFAC-PapersOnLine, 2016, 49, 265-272.	0.9	3
51	Navigation filters for Autonomous Underwater Vehicles during geotechnical surveying experiments. IFAC-PapersOnLine, 2018, 51, 171-176.	0.9	3
52	Closed loop time invariant control of 3D underactuated underwater vehicles. , 0, , .		2
53	Robust 3D Plane Estimation for Autonomous Vehicle Applications. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 79-84.	0.4	2
54	Path-Following for the Dynamic Model of a Marine Surface Vessel without Closed-Loop Control of the Surge Speed. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 243-248.	0.4	2

GIOVANNI INDIVERI

#	Article	IF	CITATIONS
55	Dynamic Modeling of a PEM Fuel Cell for a Low Consumption Prototype. , 2013, , .		2
56	An improved parameter identification schema for the dynamic model of LD converters. Journal of Process Control, 2015, 31, 64-72.	3.3	2
57	Notes on a Robust Plane Detection Approach in 3D IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 205-210.	0.4	1
58	On a Least Entropy-Like Filter for Processing Range Measurements in the Presence of Outliers*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 91-96.	0.4	1
59	Development of the Guidance Navigation and Control System of the Folaga AUV for Autonomous Acoustic Surveys in the WiMUST Project. , 2018, , .		1
60	Semi - Autonomous Olfactive Environment Inspection by a Mobile Robot. , 0, , .		0
61	On the retrieval of underwater dispersed sensors using unmanned vehicles. , 2011, , .		0
62	Preliminary results on the active pose estimation of underwater vehicles from range measurements. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 292-297.	0.4	0
63	Advances on a null-space-based approach to range-only underwater steering and positioning. , 2018, , .		0
64	Entropy-Based Estimators in the Presence of Multicollinearity and Outliers. Studies in Fuzziness and Soft Computing, 2013, , 65-76.	0.8	0
65	A UAV-Based Visual Tracking Algorithm for Sensible Areas Surveillance. Lecture Notes in Computer Science, 2014, , 12-19.	1.3	0
66	Control Protocols for Range-Based Navigation of a Networked Group of Underwater Vehicles. Frontiers in Robotics and Al, 2020, 7, 519985.	3.2	0
67	Control of Autonomous Underwater Vehicles. , 2021, , 1-6.		0