Chongfa Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1764912/publications.pdf Version: 2024-02-01

CHONCEA CAL

#	Article	lF	CITATIONS
1	Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA). Sustainability, 2018, 10, 3854.	3.2	90
2	Splash erosion of clay–sand mixtures and its relationship with soil physical properties: The effects of particle size distribution on soil structure. Catena, 2015, 135, 254-262.	5.0	71
3	Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China. Natural Hazards, 2015, 79, 455-478.	3.4	70
4	Granite residual soil properties in collapsing gullies of south China: spatial variations and effects on collapsing gully erosion. Catena, 2019, 174, 469-477.	5.0	64
5	Effects of soil physicochemical properties on aggregate stability along a weathering gradient. Catena, 2017, 156, 205-215.	5.0	60
6	Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China. Science of the Total Environment, 2018, 621, 54-66.	8.0	60
7	The effect of water content on the shear strength characteristics of granitic soils in South China. Soil and Tillage Research, 2019, 187, 50-59.	5.6	58
8	Spatial variations of aggregate stability in relation to sesquioxides for zonal soils, South-central China. Soil and Tillage Research, 2016, 157, 11-22.	5.6	52
9	Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China. Solid Earth, 2017, 8, 499-513.	2.8	49
10	Effects of erosion degree and rainfall intensity on erosion processes for Ultisols derived from quaternary red clay. Agriculture, Ecosystems and Environment, 2017, 249, 226-236.	5.3	46
11	Suction stress characteristics in granite red soils and their relationship with the collapsing gully in south China. Catena, 2018, 171, 505-522.	5.0	40
12	Fractal features of soil particle size distribution under different land-use patterns in the alluvial fans of collapsing gullies in the hilly granitic region of southern China. PLoS ONE, 2017, 12, e0173555.	2.5	36
13	Mechanical properties and soil stability affected by fertilizer treatments for an Ultisol in subtropical China. Plant and Soil, 2013, 363, 157-174.	3.7	31
14	Can Benggang be regarded as gully erosion?. Catena, 2021, 207, 105648.	5.0	30
15	RUSLE erodibility of heavyâ€ŧextured soils as affected by soil type, erosional degradation, and rainfall intensity: A field simulation. Land Degradation and Development, 2018, 29, 408-421.	3.9	29
16	Soil detachment by overland flow on hillslopes with permanent gullies in the Granite area of southeast China. Catena, 2019, 183, 104235.	5.0	28
17	Drivers of the national and regional crop production-derived greenhouse gas emissions in China. Journal of Cleaner Production, 2020, 257, 120503.	9.3	28
18	Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems. Geochemical Transactions, 2015, 16, 16.	0.7	22

CHONGFA CAI

#	Article	IF	CITATIONS
19	Spatial variations of aggregate-associated humic substance in heavy-textured soils along a climatic gradient. Soil and Tillage Research, 2020, 197, 104497.	5.6	20
20	Variation of Soil Aggregation along the Weathering Gradient: Comparison of Grain Size Distribution under Different Disruptive Forces. PLoS ONE, 2016, 11, e0160960.	2.5	20
21	A Novel and Facile Method for Characterizing Shrinkage Geometry along the Granitic Soil Profile. Soil Science Society of America Journal, 2018, 82, 20-30.	2.2	19
22	Effect of joint structure and slope direction on the development of collapsing gully in tuffaceous sandstone area in South China. International Soil and Water Conservation Research, 2020, 8, 131-140.	6.5	18
23	Changes of soil quality induced by different vegetation restoration in the collapsing gully erosion areas of southern China. International Soil and Water Conservation Research, 2021, 9, 195-206.	6.5	18
24	Identification of geo-environmental factors on Benggang susceptibility and its spatial modelling using comparative data-driven methods. Soil and Tillage Research, 2021, 208, 104857.	5.6	15
25	Erosion processes and features for a coarse-textured soil with different horizons: a laboratory simulation. Journal of Soils and Sediments, 2020, 20, 2997-3012.	3.0	13
26	A simulated study of surface morphological evolution on coarse-textured soils under intermittent rainfall events. Catena, 2022, 208, 105767.	5.0	13
27	Linkage between aggregate stability of granitic soils and the permanent gully erosion in subtropical China. Soil and Tillage Research, 2022, 221, 105411.	5.6	13
28	Effect of soil moisture on soil disintegration characteristics of different weathering profiles of collapsing gully in the hilly granitic region, South China. PLoS ONE, 2018, 13, e0209427.	2.5	12
29	Analysis of gully erosion susceptibility and spatial modelling using a GIS-based approach. Geoderma, 2022, 420, 115869.	5.1	12
30	Hydrological Response of Sloping Farmlands with Different Rock Fragment Covers in the Purple Soil Area of China. Journal of Hydrologic Engineering - ASCE, 2013, 18, 446-456.	1.9	11
31	Effects of erosion-induced land degradation on effective sediment size characteristics in sheet erosion. Catena, 2020, 195, 104843.	5.0	11
32	Estimation of soil detachment capacity on steep slopes in permanent gullies under wetting-drying cycles. Catena, 2021, 206, 105450.	5.0	10
33	High Rate of Nitrogen Fertilization Increases the Crop Water Stress Index of Corn under Soil Drought. Communications in Soil Science and Plant Analysis, 2012, 43, 2865-2877.	1.4	8
34	Variations of soil hydraulic properties along granitic slopes in Benggang erosion areas. Journal of Soils and Sediments, 2021, 21, 1177-1189.	3.0	8
35	Linking soil thickness and plotâ€scale hydrological processes on the sloping lands in the Three Gorges Area of China: a hydropedological approach. Hydrological Processes, 2012, 26, 2248-2263.	2.6	7
36	Degradation Characteristics of Soil-Quality-Related Physical and Chemical Properties Affected by Collapsing Gully: The Case of Subtropical Hilly Region, China. Sustainability, 2019, 11, 3369.	3.2	7

CHONGFA CAI

#	Article	IF	CITATIONS
37	Impact of erosionâ€induced land degradation on rainfall infiltration in different types of soils under field simulation. Land Degradation and Development, 2019, 30, 1751-1764.	3.9	7
38	Relationship between granitic soil particle-size distribution and shrinkage properties based on multifractal method. Pedosphere, 2020, 30, 853-862.	4.0	5
39	Does joint structure promote the development of gully erosion?. Catena, 2022, 214, 106233.	5.0	4
40	Regional Assessment of Eco-environmental Vulnerability Based on GIS A Case Study of Hubei Province, China. , 2009, , .		0