Mrinal C Saha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1764637/publications.pdf

Version: 2024-02-01

430874 477307 44 927 18 29 citations h-index g-index papers 44 44 44 1113 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	3D Printed Flexible Microscaled Porous Conductive Polymer Nanocomposites for Piezoresistive Sensing Applications. Advanced Materials Technologies, 2022, 7, .	5.8	12
2	Funnel-Shaped Floating Vessel Oil Skimmer with Joule Heating Sorption Functionality. Polymers, 2022, 14, 2269.	4. 5	5
3	Multi-scale analysis of aligned ZnO nanowires reinforced hybrid composites under three-point bending. Composite Interfaces, 2021, 28, 961-978.	2.3	6
4	Investigation of porous polydimethylsiloxane structures with tunable properties induced by the phase separation technique. Journal of Applied Polymer Science, 2021, 138, 50688.	2.6	10
5	Interfacial Properties of ZnO Nanowire-Enhanced Carbon Fiber Composites: A Molecular Dynamics Simulation Study. Langmuir, 2021, 37, 7138-7146.	3.5	14
6	Synthesis and characterization of porous polydimethylsiloxane structures with adjustable porosity and pore morphology using emulsion templating technique. Polymer Engineering and Science, 2021, 61, 1943-1955.	3.1	7
7	PDMS Sponges with Embedded Carbon Nanotubes as Piezoresistive Sensors for Human Motion Detection. Nanomaterials, 2021, 11, 1740.	4.1	23
8	Synthesis and characterization of hierarchical porous structure of polydimethylsiloxane (PDMS) sheets via two-step phase separation method. Materials and Design, 2021, 212, 110194.	7.0	15
9	Carbon Nanotubeâ€Based Piezoresistive Sensors Fabricated by Microwave Irradiation. Advanced Engineering Materials, 2020, 22, 1901068.	3 . 5	16
10	Development of ultrastretchable and skin attachable nanocomposites for human motion monitoring via embedded 3D printing. Composites Part B: Engineering, 2020, 200, 108224.	12.0	34
11	Rapid Microwave Polymerization of Porous Nanocomposites with Piezoresistive Sensing Function. Nanomaterials, 2020, 10, 233.	4.1	17
12	Fabrication and characterization of porous CNF/PDMS nanocomposites for sensing applications. Applied Nanoscience (Switzerland), 2019, 9, 1309-1317.	3.1	22
13	Functional nanocomposites for 3D printing of stretchable and wearable sensors. Applied Nanoscience (Switzerland), 2019, 9, 2071-2083.	3.1	51
14	Highly sensitive compression sensors using three-dimensional printed polydimethylsiloxane/carbon nanotube nanocomposites. Journal of Intelligent Material Systems and Structures, 2019, 30, 1216-1224.	2.5	25
15	Investigation of Lightweight and Flexible Carbon Nanofiber/Poly Dimethylsiloxane Nanocomposite Sponge for Piezoresistive Sensor Application. Advanced Engineering Materials, 2019, 21, 1801068.	3.5	47
16	Multiscale Modeling of Fiber Fragmentation Process in Aligned ZnO Nanowires Enhanced Single Fiber Composites. Scientific Reports, 2019, 9, 19964.	3.3	11
17	Highly Conductive Polydimethylsiloxane/Carbon Nanofiber Composites for Flexible Sensor Applications. Advanced Materials Technologies, 2019, 4, 1800398.	5.8	72
18	Studies of reaction mechanisms during stabilization of electrospun polyacrylonitrile carbon nanofibers. Polymer Engineering and Science, 2018, 58, 1315-1321.	3.1	19

#	Article	IF	CITATIONS
19	Influence of humidity, temperature, and annealing on microstructure and tensile properties of electrospun polyacrylonitrile nanofibers. Polymer Engineering and Science, 2018, 58, 998-1009.	3.1	29
20	3D Printing of Highly Stretchable Strain Sensors Based on Carbon Nanotube Nanocomposites. Advanced Engineering Materials, 2018, 20, 1800425.	3. 5	96
21	CNT Bucky Paper Enhanced Sandwich Composites for In-Situ Load Sensing. , 2017, , .		2
22	Poly dimethylsiloxane/carbon nanofiber nanocomposites: fabrication and characterization of electrical and thermal properties. International Journal of Smart and Nano Materials, 2016, 7, 236-247.	4.2	24
23	Incorporating Density and Temperature in the Stretched Exponential Model for Predicting Stress Relaxation Behavior of Polymer Foams. Journal of Engineering Materials and Technology, Transactions of the ASME, 2016, 138, .	1.4	5
24	Investigation on jet stability, fiber diameter, and tensile properties of electrospun polyacrylonitrile nanofibrous yarns. Journal of Applied Polymer Science, 2015, 132, .	2.6	33
25	Evaluation of Moisture Susceptibility and Healing Properties of Nanoclay-Modified Asphalt Binders. , 2015, , .		3
26	Evaluation of Moisture Susceptibility of Nanoclay-Modified Asphalt Binders through the Surface Science Approach. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	31
27	Evaluation of Viscosity and Rutting Properties of Nanoclay-Modified Asphalt Binders. , 2014, , .		22
28	Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites. Journal of Thermal Analysis and Calorimetry, 2013, 113, 467-474.	3.6	33
29	Effect of carbon nanotube persistence length on heat transfer in nanocomposites: A simulation approach. Applied Physics Letters, 2013, 102, 203116.	3.3	10
30	Effect of Carbon Nanofibers on Thermal Conductivity of Carbon Fiber Reinforced Composites. Procedia Engineering, 2013, 56, 814-820.	1,2	47
31	Investigation of Mechanical Properties of Nanoclay Incorporated Room Temperature Vulcanized (RTV) Silicone Foams., 2013,,.		0
32	Ultrasound Assisted Hybrid Carbon Epoxy Composites Containing Carbon Nanotubes. Journal of Engineering Materials and Technology, Transactions of the ASME, 2013, 135, .	1.4	7
33	Study on the Cure Kinetic Behavior of Thermosetting Polyurethane Solids and Foams: Effect of Temperature, Density, and Carbon Nanofiber. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	1.4	10
34	Processing and Characterization of Thermoplastic Polyurethane Nanocomposite Thin Films. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	1.4	1
35	Recent Advances in Micro, Nano, and Cellular Composite Materials. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	1.4	0
36	Effects of Ultrasound and Strain Rate on Tensile Mechanical Behavior of Thermoplastic Poly Urethane Thin Films. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	1.4	0

3

#	Article	IF	CITATIONS
37	Effect of Distribution Media Length and Multiwalled Carbon Nanotubes on the Formation of Voids in VARTM Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	1.4	5
38	Tensile Stress Relaxation Behavior of Thermosetting Polyurethane Solid and Foams: Experiment and Model Prediction. Journal of Engineering Materials and Technology, Transactions of the ASME, 2011, 133, .	1.4	6
39	Nanoclayâ€reinforced syntactic foams: Flexure and thermal behavior. Polymer Composites, 2010, 31, 1332-1342.	4.6	21
40	Effect of nanoparticles on modeâ€i fracture toughness of polyurethane foams. Polymer Composites, 2009, 30, 1058-1064.	4.6	30
41	Processing and performance evaluation of hollow microspheres filled epoxy composites. Polymer Composites, 2008, 29, 293-301.	4.6	21
42	Response of sandwich composites with nanophased cores under flexural loading. Composites Part B: Engineering, 2004, 35, 543-550.	12.0	78
43	Atomistic Simulations on Structural Characteristics of ZnO Nanowire-Enhanced Graphene/Epoxy Polymer Composites: Implications for Lightweight Structures. ACS Applied Nano Materials, 0, , .	5.0	4
44	Functionalization Enhancement on Interfacial Properties Between Graphene and ZnO NW/Epoxy: A Molecular Dynamics Simulation Study. Advanced Theory and Simulations, 0, , 2200010.	2.8	3