Marc Clastre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1764437/publications.pdf

Version: 2024-02-01

28	1,389	18	28
papers	citations	h-index	g-index
31	31	31	1277 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A look inside an alkaloid multisite plant: the Catharanthus logistics. Current Opinion in Plant Biology, 2014, 19, 43-50.	3.5	135
2	Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta, 2011, 234, 903-914.	1.6	126
3	Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry, 2013, 85, 36-43.	1.4	123
4	Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1517, 159-163.	2.4	117
5	A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nature Communications, 2017, 8, 316.	5.8	117
6	A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in <i>Catharanthus roseus</i> /i>Â Â Â. Plant Physiology, 2013, 163, 1792-1803.	2.3	97
7	Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine. Phytochemistry, 2015, 113, 9-23.	1.4	92
8	1-Deoxy-D-xylulose 5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiology and Biochemistry, 2000, 38, 559-566.	2.8	87
9	The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochemistry Reviews, 2007, 6, 259-276.	3.1	72
10	A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. Plant Molecular Biology, 2012, 79, 443-459.	2.0	60
11	Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics, 2015, 16, 619.	1.2	54
12	A <scp>BAHD</scp> acyltransferase catalyzing 19â€ <i>O</i> àâ€acetylation of tabersonine derivatives in roots of <i>Catharanthus roseus</i> enables combinatorial synthesis of monoterpene indole alkaloids. Plant Journal, 2018, 94, 469-484.	2.8	46
13	Class II Cytochrome P450 Reductase Governs the Biosynthesis of Alkaloids. Plant Physiology, 2016, 172, 1563-1577.	2.3	44
14	Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Scientific Reports, 2017, 7, 40453.	1.6	39
15	Diversity and Evolution of Sensor Histidine Kinases in Eukaryotes. Genome Biology and Evolution, 2019, 11, 86-108.	1.1	28
16	Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories. Microbial Biotechnology, 2021, 14, 2693-2699.	2.0	24
17	Deciphering the Evolution, Cell Biology and Regulation of Monoterpene Indole Alkaloids. Advances in Botanical Research, 2013, 68, 73-109.	0.5	22
18	Purification, molecular cloning, and cell-specific gene expression of the alkaloid-accumulation associated protein CrPS in Catharanthus roseus. Journal of Experimental Botany, 2005, 56, 1221-1228.	2.4	20

#	Article	IF	CITATION
19	Alternative splicing creates a pseudo-strictosidine \hat{l}^2 - <scp>d</scp> -glucosidase modulating alkaloid synthesis in <i>Catharanthus roseus</i> - Plant Physiology, 2021, 185, 836-856.	2.3	19
20	Virus-induced gene silencing in Rauwolfia species. Protoplasma, 2017, 254, 1813-1818.	1.0	15
21	ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells. Journal of Plant Physiology, 2014, 171, 1510-1513.	1.6	14
22	Induction of a novel cytochrome P450 (CYP96 family) in periwinkle (Catharanthus roseus) cells induced for terpenoid indole alkaloid production. Plant Science, 1999, 149, 105-113.	1.7	13
23	Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules, 2021, 26, 3596.	1.7	10
24	Stilbenoid-Enriched Grape Cane Extracts for the Biocontrol of Grapevine Diseases. Progress in Biological Control, 2020, , 215-239.	0.5	6
25	Vacuole-Targeted Proteins: Ins and Outs of Subcellular Localization Studies. Methods in Molecular Biology, 2018, 1789, 33-54.	0.4	4
26	Isolation of CrHPt1, a cDNA encoding a histidine-containing phospho-transfer domain in Catharanthus roseus. Acta Botanica Gallica, 2002, 149, 67-77.	0.9	3
27	A Biolistic-Mediated Virus-Induced Gene Silencing in Apocynaceae to Map Biosynthetic Pathways of Alkaloids. Methods in Molecular Biology, 2020, 2172, 93-110.	0.4	1
28	Prenylated Proteins Are Required for Methyl-Jasmonate-Induced Monoterpenoid Indole Alkaloids Biosynthesis in Catharanthus roseus. , 2012. , 285-296.		0