Fengdong Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1763985/publications.pdf

Version: 2024-02-01

51	1,895	25	43
papers	citations	h-index	g-index
51	51	51	1911
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mesoporous Ti0.5Cr0.5N for trace H2S detection with excellent long-term stability. Journal of Hazardous Materials, 2022, 423, 127193.	12.4	9
2	A dimethyl disulfide gas sensor based on nanosized Pt-loaded tetrakaidecahedral α-Fe ₂ O ₃ nanocrystals. Nanotechnology, 2022, 33, 405502.	2.6	7
3	Mesoporous titanium niobium nitrides supported Pt nanoparticles for highly selective and sensitive formaldehyde sensing. Journal of Materials Chemistry A, 2021, 9, 19840-19846.	10.3	14
4	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie, 2021, 133, 6635-6640.	2.0	22
5	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie - International Edition, 2021, 60, 6561-6566.	13.8	66
6	PdO-modified \hat{l}_{\pm} -Fe2O3 nanoparticles with enhanced gas performance for dimethyl disulfide. Journal of Alloys and Compounds, 2021, 862, 158489.	5.5	9
7	Integrated sensing array of the perovskite-type LnFeO3 (LnËŁa, Pr, Nd, Sm) to discriminate detection of volatile sulfur compounds. Journal of Hazardous Materials, 2021, 413, 125380.	12.4	22
8	In2O3 nanocubes modified with RuO2 for detection of TXM vapors containing benzyl group. Sensors and Actuators B: Chemical, 2021, 338, 129731.	7.8	8
9	Excellent stability fuel cell type methanol sensor based on platinum-decorated mesoporous CrN. Sensors and Actuators B: Chemical, 2021, 341, 129993.	7.8	8
10	Theoretical study on W-Co3O4 (1 11) surface: Acetone adsorption and sensing mechanism. Applied Surface Science, 2021, 566, 150642.	6.1	11
11	A fuel cell type gas sensor based on Pt/NbN for highly selective detection of hydrogen sulfide. Sensors and Actuators B: Chemical, 2021, 346, 130516.	7.8	6
12	Pt/WN based fuel cell type methanol sensor. Sensors and Actuators B: Chemical, 2020, 307, 127686.	7.8	26
13	Highly selective and sensitive xylene sensors based on Nb-doped NiO nanosheets. Sensors and Actuators B: Chemical, 2020, 308, 127520.	7.8	33
14	Engineering Co3+ cations in Co3O4 multishelled microspheres by Mn doping: The roles of Co3+ and oxygen species for sensitive xylene detection. Sensors and Actuators B: Chemical, 2020, 308, 127651.	7.8	31
15	ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance. Nanotechnology, 2020, 31, 115502.	2.6	13
16	Enhanced, stable, humidity-tolerant xylene sensing using ordered macroporous NiO/ZrO2 nanocomposites. Sensors and Actuators B: Chemical, 2020, 324, 128648.	7.8	24
17	Ru-decorated WO3 nanosheets for efficient xylene gas sensing application. Journal of Alloys and Compounds, 2020, 826, 154196.	5.5	39
18	Construction of Co3O4/CoWO4 core-shell urchin-like microspheres through ion-exchange method for high-performance acetone gas sensing performance. Sensors and Actuators B: Chemical, 2020, 309, 127711.	7.8	38

#	Article	IF	CITATIONS
19	Platinum decorated mesoporous titanium nitride for fuel-cell type methanol gas sensor. Sensors and Actuators B: Chemical, 2020, 308, 127713.	7.8	24
20	Metal–organic framework-derived Co3O4/CoFe2O4 double-shelled nanocubes for selective detection of sub-ppm-level formaldehyde. Sensors and Actuators B: Chemical, 2019, 298, 126887.	7.8	62
21	Facile synthesis approach for preparation of robust and recyclable Ag/ZnO nanorods with high catalytic activity for 4-nitrophenol reduction. Materials Research Bulletin, 2019, 119, 110536.	5.2	35
22	Oxygen-Defective Ultrathin BiVO ₄ Nanosheets for Enhanced Gas Sensing. ACS Applied Materials & Sensing. ACS Applied Materi	8.0	81
23	High performance acetone sensor based on ZnO nanorods modified by Au nanoparticles. Journal of Alloys and Compounds, 2019, 797, 246-252.	5. 5	67
24	Hierarchical Co3O4@NiMoO4 core-shell nanowires for chemiresistive sensing of xylene vapor. Mikrochimica Acta, 2019, 186, 222.	5.0	26
25	A dual emission nanocomposite prepared from copper nanoclusters and carbon dots as a ratiometric fluorescent probe for sulfide and gaseousÂH2S. Mikrochimica Acta, 2019, 186, 258.	5.0	30
26	An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sensors and Actuators B: Chemical, 2019, 290, 59-67.	7.8	172
27	Fe2O3 nanoparticles-decorated MoO3 nanobelts for enhanced chemiresistive gas sensing. Journal of Alloys and Compounds, 2019, 782, 672-678.	5. 5	60
28	Manganese-doped zinc oxide hollow balls for chemiresistive sensing of acetone vapors. Mikrochimica Acta, 2019, 186, 44.	5.0	11
29	Large-scale synthesis of dual-emitting-based visualization sensing paper for humidity and ethanol detection. Sensors and Actuators B: Chemical, 2019, 282, 9-15.	7.8	25
30	Porous coral-like NiCo2O4 nanospheres with promising xylene gas sensing properties. Sensors and Actuators B: Chemical, 2018, 261, 203-209.	7.8	47
31	Coordination Polymer-Derived Multishelled Mixed Ni–Co Oxide Microspheres for Robust and Selective Detection of Xylene. ACS Applied Materials & Selective Detection of Xylene.	8.0	64
32	Achieving photocatalytic water oxidation on LaNbON 2 under visible light irradiation. Journal of Energy Chemistry, 2018, 27, 367-371.	12.9	22
33	Facile synthesis of mesoporous Co3O4 nanofans as gas sensing materials for selective detection of xylene vapor. Materials Letters, 2018, 218, 127-130.	2.6	27
34	Self-template derived ZnFe2O4 double-shell microspheres for chemresistive gas sensing. Sensors and Actuators B: Chemical, 2018, 265, 625-631.	7.8	64
35	Aliovalent Fe(<scp>iii</scp>)-doped NiO microspheres for enhanced butanol gas sensing properties. Dalton Transactions, 2018, 47, 15181-15188.	3.3	34
36	Self-sacrificing templated formation of Co3O4/ZnCo2O4 composite hollow nanostructures for highly sensitive detecting acetone vapor. Sensors and Actuators B: Chemical, 2018, 273, 1202-1210.	7.8	69

#	Article	IF	Citations
37	MOF-derived Co3O4/NiCo2O4 double-shelled nanocages with excellent gas sensing properties. Materials Letters, 2017, 190, 75-78.	2.6	68
38	Crucial Role of Donor Density in the Performance of Oxynitride Perovskite LaTiO ₂ N for Photocatalytic Water Oxidation. ChemSusChem, 2017, 10, 930-937.	6.8	19
39	Metal-organic frameworks-derived porous ZnO/Ni0.9Zn0.1O double-shelled nanocages as gas sensing material for selective detection of xylene. Sensors and Actuators B: Chemical, 2017, 252, 649-656.	7.8	40
40	Chloride flux growth of crystalline strontium niobates and nitridation to perovskite SrNbO2N. Ceramics International, 2017, 43, 7695-7700.	4.8	3
41	Effect of nitridation on visible light photocatalytic behavior of microporous (Ag, Ag 2 O) co-loaded TiO 2. Microporous and Mesoporous Materials, 2017, 240, 137-144.	4.4	15
42	Low defect density, high surface area LaNbON2 prepared via nitridation of La3NbO7. Materials Letters, 2017, 188, 212-214.	2.6	13
43	Facile synthesis of In2O3 microcubes with exposed $\{1\ 0\ 0\}$ facets as gas sensing material for selective detection of ethanol vapor. Materials Letters, 2017, 209, 618-621.	2.6	23
44	Mesoporous WN/WO3-Composite Nanosheets for the Chemiresistive Detection of NO2 at Room Temperature. Inorganics, 2016, 4, 24.	2.7	8
45	Low Workingâ€Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites. Small, 2016, 12, 3128-3133.	10.0	57
46	A mesoporous Ni ₃ N/NiO composite with a coreâ€"shell structure for room temperature, selective and sensitive NO ₂ gas sensing. RSC Advances, 2016, 6, 42917-42922.	3.6	6
47	Designed formation through a metal organic framework route of ZnO/ZnCo ₂ O ₄ hollow core–shell nanocages with enhanced gas sensing properties. Nanoscale, 2016, 8, 16349-16356.	5.6	152
48	Mesoporous InN/In ₂ O ₃ heterojunction with improved sensitivity and selectivity for room temperature NO ₂ gas sensing. Nanotechnology, 2016, 27, 385501.	2.6	17
49	Template-free synthesis of In 2 O 3 nanoparticles and their acetone sensing properties. Materials Letters, 2016, 182, 340-343.	2.6	25
50	Hierarchical Fe3O4@Co3O4 core–shell microspheres: Preparation and acetone sensing properties. Sensors and Actuators B: Chemical, 2014, 199, 346-353.	7.8	98
51	Preparation and Xyleneâ€Sensing Properties of Co ₃ O ₄ Nanofibers. International Journal of Applied Ceramic Technology, 2014, 11, 619-625.	2.1	45