
Fengdong Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1763985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sensors and Actuators B: Chemical, 2019, 290, 59-67.	7.8	172
2	Designed formation through a metal organic framework route of ZnO/ZnCo ₂ O ₄ hollow core–shell nanocages with enhanced gas sensing properties. Nanoscale, 2016, 8, 16349-16356.	5.6	152
3	Hierarchical Fe3O4@Co3O4 core–shell microspheres: Preparation and acetone sensing properties. Sensors and Actuators B: Chemical, 2014, 199, 346-353.	7.8	98
4	Oxygen-Defective Ultrathin BiVO ₄ Nanosheets for Enhanced Gas Sensing. ACS Applied Materials & Interfaces, 2019, 11, 23495-23502.	8.0	81
5	Self-sacrificing templated formation of Co3O4/ZnCo2O4 composite hollow nanostructures for highly sensitive detecting acetone vapor. Sensors and Actuators B: Chemical, 2018, 273, 1202-1210.	7.8	69
6	MOF-derived Co3O4/NiCo2O4 double-shelled nanocages with excellent gas sensing properties. Materials Letters, 2017, 190, 75-78.	2.6	68
7	High performance acetone sensor based on ZnO nanorods modified by Au nanoparticles. Journal of Alloys and Compounds, 2019, 797, 246-252.	5.5	67
8	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie - International Edition, 2021, 60, 6561-6566.	13.8	66
9	Coordination Polymer-Derived Multishelled Mixed Ni–Co Oxide Microspheres for Robust and Selective Detection of Xylene. ACS Applied Materials & Interfaces, 2018, 10, 15314-15321.	8.0	64
10	Self-template derived ZnFe2O4 double-shell microspheres for chemresistive gas sensing. Sensors and Actuators B: Chemical, 2018, 265, 625-631.	7.8	64
11	Metal–organic framework-derived Co3O4/CoFe2O4 double-shelled nanocubes for selective detection of sub-ppm-level formaldehyde. Sensors and Actuators B: Chemical, 2019, 298, 126887.	7.8	62
12	Fe2O3 nanoparticles-decorated MoO3 nanobelts for enhanced chemiresistive gas sensing. Journal of Alloys and Compounds, 2019, 782, 672-678.	5.5	60
13	Low Workingâ€Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites. Small, 2016, 12, 3128-3133.	10.0	57
14	Porous coral-like NiCo2O4 nanospheres with promising xylene gas sensing properties. Sensors and Actuators B: Chemical, 2018, 261, 203-209.	7.8	47
15	Preparation and Xyleneâ€5ensing Properties of Co ₃ O ₄ Nanofibers. International Journal of Applied Ceramic Technology, 2014, 11, 619-625.	2.1	45
16	Metal-organic frameworks-derived porous ZnO/Ni0.9Zn0.1O double-shelled nanocages as gas sensing material for selective detection of xylene. Sensors and Actuators B: Chemical, 2017, 252, 649-656.	7.8	40
17	Ru-decorated WO3 nanosheets for efficient xylene gas sensing application. Journal of Alloys and Compounds, 2020, 826, 154196.	5.5	39
18	Construction of Co3O4/CoWO4 core-shell urchin-like microspheres through ion-exchange method for high-performance acetone gas sensing performance. Sensors and Actuators B: Chemical, 2020, 309, 127711.	7.8	38

Fengdong Qu

#	Article	IF	CITATIONS
19	Facile synthesis approach for preparation of robust and recyclable Ag/ZnO nanorods with high catalytic activity for 4-nitrophenol reduction. Materials Research Bulletin, 2019, 119, 110536.	5.2	35
20	Aliovalent Fe(<scp>iii</scp>)-doped NiO microspheres for enhanced butanol gas sensing properties. Dalton Transactions, 2018, 47, 15181-15188.	3.3	34
21	Highly selective and sensitive xylene sensors based on Nb-doped NiO nanosheets. Sensors and Actuators B: Chemical, 2020, 308, 127520.	7.8	33
22	Engineering Co3+ cations in Co3O4 multishelled microspheres by Mn doping: The roles of Co3+ and oxygen species for sensitive xylene detection. Sensors and Actuators B: Chemical, 2020, 308, 127651.	7.8	31
23	A dual emission nanocomposite prepared from copper nanoclusters and carbon dots as a ratiometric fluorescent probe for sulfide and gaseousÂH2S. Mikrochimica Acta, 2019, 186, 258.	5.0	30
24	Facile synthesis of mesoporous Co3O4 nanofans as gas sensing materials for selective detection of xylene vapor. Materials Letters, 2018, 218, 127-130.	2.6	27
25	Hierarchical Co3O4@NiMoO4 core-shell nanowires for chemiresistive sensing of xylene vapor. Mikrochimica Acta, 2019, 186, 222.	5.0	26
26	Pt/WN based fuel cell type methanol sensor. Sensors and Actuators B: Chemical, 2020, 307, 127686.	7.8	26
27	Template-free synthesis of In 2 O 3 nanoparticles and their acetone sensing properties. Materials Letters, 2016, 182, 340-343.	2.6	25
28	Large-scale synthesis of dual-emitting-based visualization sensing paper for humidity and ethanol detection. Sensors and Actuators B: Chemical, 2019, 282, 9-15.	7.8	25
29	Enhanced, stable, humidity-tolerant xylene sensing using ordered macroporous NiO/ZrO2 nanocomposites. Sensors and Actuators B: Chemical, 2020, 324, 128648.	7.8	24
30	Platinum decorated mesoporous titanium nitride for fuel-cell type methanol gas sensor. Sensors and Actuators B: Chemical, 2020, 308, 127713.	7.8	24
31	Facile synthesis of In2O3 microcubes with exposed {1 0 0} facets as gas sensing material for selective detection of ethanol vapor. Materials Letters, 2017, 209, 618-621.	2.6	23
32	Achieving photocatalytic water oxidation on LaNbON 2 under visible light irradiation. Journal of Energy Chemistry, 2018, 27, 367-371.	12.9	22
33	Surface Functionalized Sensors for Humidityâ€Independent Gas Detection. Angewandte Chemie, 2021, 133, 6635-6640.	2.0	22
34	Integrated sensing array of the perovskite-type LnFeO3 (LnËŁa, Pr, Nd, Sm) to discriminate detection of volatile sulfur compounds. Journal of Hazardous Materials, 2021, 413, 125380.	12.4	22
35	Crucial Role of Donor Density in the Performance of Oxynitride Perovskite LaTiO ₂ N for Photocatalytic Water Oxidation. ChemSusChem, 2017, 10, 930-937.	6.8	19
36	Mesoporous InN/In ₂ O ₃ heterojunction with improved sensitivity and selectivity for room temperature NO ₂ gas sensing. Nanotechnology, 2016, 27, 385501.	2.6	17

Fengdong Qu

#	Article	IF	CITATIONS
37	Effect of nitridation on visible light photocatalytic behavior of microporous (Ag, Ag 2 O) co-loaded TiO 2. Microporous and Mesoporous Materials, 2017, 240, 137-144.	4.4	15
38	Mesoporous titanium niobium nitrides supported Pt nanoparticles for highly selective and sensitive formaldehyde sensing. Journal of Materials Chemistry A, 2021, 9, 19840-19846.	10.3	14
39	Low defect density, high surface area LaNbON2 prepared via nitridation of La3NbO7. Materials Letters, 2017, 188, 212-214.	2.6	13
40	ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance. Nanotechnology, 2020, 31, 115502.	2.6	13
41	Manganese-doped zinc oxide hollow balls for chemiresistive sensing of acetone vapors. Mikrochimica Acta, 2019, 186, 44.	5.0	11
42	Theoretical study on W-Co3O4 (1 1 1) surface: Acetone adsorption and sensing mechanism. Applied Surface Science, 2021, 566, 150642.	6.1	11
43	PdO-modified α-Fe2O3 nanoparticles with enhanced gas performance for dimethyl disulfide. Journal of Alloys and Compounds, 2021, 862, 158489.	5.5	9
44	Mesoporous Ti0.5Cr0.5N for trace H2S detection with excellent long-term stability. Journal of Hazardous Materials, 2022, 423, 127193.	12.4	9
45	Mesoporous WN/WO3-Composite Nanosheets for the Chemiresistive Detection of NO2 at Room Temperature. Inorganics, 2016, 4, 24.	2.7	8
46	In2O3 nanocubes modified with RuO2 for detection of TXM vapors containing benzyl group. Sensors and Actuators B: Chemical, 2021, 338, 129731.	7.8	8
47	Excellent stability fuel cell type methanol sensor based on platinum-decorated mesoporous CrN. Sensors and Actuators B: Chemical, 2021, 341, 129993.	7.8	8
48	A dimethyl disulfide gas sensor based on nanosized Pt-loaded tetrakaidecahedral α-Fe ₂ O ₃ nanocrystals. Nanotechnology, 2022, 33, 405502.	2.6	7
49	A mesoporous Ni ₃ N/NiO composite with a core–shell structure for room temperature, selective and sensitive NO ₂ gas sensing. RSC Advances, 2016, 6, 42917-42922.	3.6	6
50	A fuel cell type gas sensor based on Pt/NbN for highly selective detection of hydrogen sulfide. Sensors and Actuators B: Chemical, 2021, 346, 130516.	7.8	6
51	Chloride flux growth of crystalline strontium niobates and nitridation to perovskite SrNbO2N. Ceramics International, 2017, 43, 7695-7700.	4.8	3