
Michael S Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1763918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parkin-deficient Mice Exhibit Nigrostriatal Deficits but Not Loss of Dopaminergic Neurons. Journal of Biological Chemistry, 2003, 278, 43628-43635.	3.4	784
2	Full-Length Human Mutant Huntingtin with a Stable Polyglutamine Repeat Can Elicit Progressive and Selective Neuropathogenesis in BACHD Mice. Journal of Neuroscience, 2008, 28, 6182-6195.	3.6	558
3	Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nature Genetics, 2000, 26, 300-306.	21.4	495
4	Early and Progressive Sensorimotor Anomalies in Mice Overexpressing Wild-Type Human Â-Synuclein. Journal of Neuroscience, 2004, 24, 9434-9440.	3.6	428
5	Dopamine and N-Methyl-D- Aspartate Receptor Interactions in the Neostriatum. Developmental Neuroscience, 1998, 20, 1-18.	2.0	360
6	Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: A critical review and the UCLA experience. Epilepsia, 2009, 50, 1310-1335.	5.1	345
7	Heterosynaptic Dopamine Neurotransmission Selects Sets of Corticostriatal Terminals. Neuron, 2004, 42, 653-663.	8.1	337
8	Transient and Progressive Electrophysiological Alterations in the Corticostriatal Pathway in a Mouse Model of Huntington's Disease. Journal of Neuroscience, 2003, 23, 961-969.	3.6	327
9	Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease. Journal of Neuroscience Research, 1999, 58, 515-532.	2.9	316
10	Electrophysiological and Morphological Changes in Striatal Spiny Neurons in R6/2 Huntington's Disease Transgenic Mice. Journal of Neurophysiology, 2001, 86, 2667-2677.	1.8	295
11	The corticostriatal pathway in Huntington's disease. Progress in Neurobiology, 2007, 81, 253-271.	5.7	287
12	Dopaminergic Modulation of NMDA-Induced Whole Cell Currents in Neostriatal Neurons in Slices: Contribution of Calcium Conductances. Journal of Neurophysiology, 1998, 79, 82-94.	1.8	278
13	Changes in Cortical and Striatal Neurons Predict Behavioral and Electrophysiological Abnormalities in a Transgenic Murine Model of Huntington's Disease. Journal of Neuroscience, 2001, 21, 9112-9123.	3.6	266
14	NMDA receptor function in mouse models of Huntington disease. Journal of Neuroscience Research, 2001, 66, 525-539.	2.9	246
15	Dopamine Enhancement of NMDA Currents in Dissociated Medium-Sized Striatal Neurons: Role of D1 Receptors and DARPP-32. Journal of Neurophysiology, 2002, 88, 3010-3020.	1.8	244
16	Epileptogenesis in pediatric cortical dysplasia: The dysmature cerebral developmental hypothesis. Epilepsy and Behavior, 2006, 9, 219-235.	1.7	184
17	Morphological and electrophysiological characterization of abnormal cell types in pediatric cortical dysplasia. Journal of Neuroscience Research, 2003, 72, 472-486.	2.9	179
18	Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease. Nature Medicine, 2014, 20, 536-541.	30.7	177

#	Article	IF	CITATIONS
19	Differential electrophysiological properties of dopamine D1 and D2 receptor ontaining striatal mediumâ€sized spiny neurons. European Journal of Neuroscience, 2008, 27, 671-682.	2.6	174
20	Genetic mouse models of Huntington's and Parkinson's diseases: illuminating but imperfect. Trends in Neurosciences, 2004, 27, 691-697.	8.6	170
21	Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse, 1992, 11, 330-341.	1.2	161
22	Age-Dependent Alterations of Corticostriatal Activity in the YAC128 Mouse Model of Huntington Disease. Journal of Neuroscience, 2009, 29, 2414-2427.	3.6	160
23	Modulatory Actions of Dopamine on NMDA Receptor-Mediated Responses Are Reduced in D1A-Deficient Mutant Mice. Journal of Neuroscience, 1996, 16, 5870-5882.	3.6	158
24	Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations. Journal of Neuroscience, 2017, 37, 8374-8384.	3.6	154
25	Alterations in Cortical Excitation and Inhibition in Genetic Mouse Models of Huntington's Disease. Journal of Neuroscience, 2009, 29, 10371-10386.	3.6	152
26	Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse, 1996, 24, 65-78.	1.2	150
27	Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human αâ€synuclein. Journal of Neuroscience Research, 2011, 89, 1091-1102.	2.9	144
28	Dopamine and Clutamate in Huntington's Disease: A Balancing Act. CNS Neuroscience and Therapeutics, 2010, 16, 163-178.	3.9	143
29	Dopamine imbalance in Huntington's disease: a mechanism for the lack of behavioral flexibility. Frontiers in Neuroscience, 2013, 7, 114.	2.8	126
30	The mouse cortico–basal ganglia–thalamic network. Nature, 2021, 598, 188-194.	27.8	126
31	Differential Electrophysiological Changes in Striatal Output Neurons in Huntington's Disease. Journal of Neuroscience, 2011, 31, 1170-1182.	3.6	125
32	Differential Susceptibility to Excitotoxic Stress in YAC128 Mouse Models of Huntington Disease between Initiation and Progression of Disease. Journal of Neuroscience, 2009, 29, 2193-2204.	3.6	123
33	Dye-Coupling in the neostriatum of the rat: I. Modulation by dopamine-depleting lesions. Synapse, 1989, 4, 229-237.	1.2	120
34	Targeted expression of \hat{l} ¹ /4-opioid receptors in a subset of striatal direct-pathway neurons restores opiate reward. Nature Neuroscience, 2014, 17, 254-261.	14.8	118
35	Increased GABAergic function in mouse models of Huntington's disease: Reversal by BDNF. Journal of Neuroscience Research, 2004, 78, 855-867.	2.9	117
36	The role of dopamine in huntington's disease. Progress in Brain Research, 2014, 211, 235-254.	1.4	117

#	Article	IF	CITATIONS
37	Where Do You Think You Are Going? The NMDA-D1 Receptor Trap. Science Signaling, 2006, 2006, pe20.	3.6	113
38	Contralateral hemimicrencephaly and clinical–pathological correlations in children with hemimegalencephaly. Brain, 2006, 129, 352-365.	7.6	109
39	Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease. Molecular Neurodegeneration, 2007, 2, 8.	10.8	108
40	Parvalbumin Interneurons Modulate Striatal Output and Enhance Performance during Associative Learning. Neuron, 2017, 93, 1451-1463.e4.	8.1	107
41	Multiple Sources of Striatal Inhibition Are Differentially Affected in Huntington's Disease Mouse Models. Journal of Neuroscience, 2013, 33, 7393-7406.	3.6	106
42	Striatal Potassium Channel Dysfunction in Huntington's Disease Transgenic Mice. Journal of Neurophysiology, 2005, 93, 2565-2574.	1.8	98
43	A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington's disease in mice. Nature Communications, 2013, 4, 2917.	12.8	96
44	Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. ELife, 2015, 4, e08352.	6.0	92
45	Are Cytomegalic Neurons and Balloon Cells Generators of Epileptic Activity in Pediatric Cortical Dysplasia?. Epilepsia, 2005, 46, 82-88.	5.1	89
46	Striatal neurochemical changes in transgenic models of Huntington's disease. Journal of Neuroscience Research, 2002, 68, 716-729.	2.9	88
47	Immature Neurons and GABA Networks May Contribute to Epileptogenesis in Pediatric Cortical Dysplasia. Epilepsia, 2007, 48, 79-85.	5.1	88
48	Dopamine modulation of excitatory currents in the striatum is dictated by the expression of D1 or D2 receptors and modified by endocannabinoids. European Journal of Neuroscience, 2010, 31, 14-28.	2.6	87
49	Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease. Journal of Neuroscience Research, 2005, 82, 377-386.	2.9	85
50	Cholesterolâ€loaded nanoparticles ameliorate synaptic and cognitive function in <scp>H</scp> untington's disease mice. EMBO Molecular Medicine, 2015, 7, 1547-1564.	6.9	84
51	Genetic Mouse Models of Huntington's Disease: Focus on Electrophysiological Mechanisms. ASN Neuro, 2010, 2, AN20090058.	2.7	80
52	Basic Mechanisms of Epileptogenesis in Pediatric Cortical Dysplasia. CNS Neuroscience and Therapeutics, 2015, 21, 92-103.	3.9	78
53	Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice. Stem Cell Reports, 2018, 10, 58-72.	4.8	76
54	Cytomegalic Interneurons. Journal of Neuropathology and Experimental Neurology, 2007, 66, 491-504.	1.7	73

#	Article	IF	CITATIONS
55	Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease. Journal of Neurophysiology, 2015, 113, 2953-2966.	1.8	73
56	Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: are dendrites necessary?. European Journal of Neuroscience, 2004, 19, 2455-2463.	2.6	71
57	Postnatal Development of Glutamate Receptor-Mediated Responses in the Neostriatum. Developmental Neuroscience, 1998, 20, 154-163.	2.0	70
58	Altered Balance of Activity in the Striatal Direct and Indirect Pathways in Mouse Models of Huntington's Disease. Frontiers in Systems Neuroscience, 2011, 5, 46.	2.5	70
59	Altered Cortical Glutamate Receptor Function in the R6/2 Model of Huntington's Disease. Journal of Neurophysiology, 2006, 95, 2108-2119.	1.8	69
60	Alterations in Striatal Synaptic Transmission are Consistent across Genetic Mouse Models of Huntington's Disease. ASN Neuro, 2010, 2, AN20100007.	2.7	68
61	Neurons Recorded from Pediatric Epilepsy Surgery Patients with Cortical Dysplasia. Epilepsia, 2000, 41, S162-S167.	5.1	66
62	Mutant huntingtin reduction in astrocytes slows disease progression in the bachd conditional huntington's disease mouse model. Human Molecular Genetics, 2019, 28, 487-500.	2.9	63
63	Dye-Coupling in the neostriatum of the rat: II. Decreased coupling between neurons during development. Synapse, 1989, 4, 238-247.	1.2	62
64	A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease. Journal of Neurophysiology, 2012, 107, 677-691.	1.8	61
65	Functional and molecular development of striatal fastâ€spiking GABAergic interneurons and their cortical inputs. European Journal of Neuroscience, 2005, 22, 1097-1108.	2.6	60
66	Alphaâ€synuclein overexpression in mice alters synaptic communication in the corticostriatal pathway. Journal of Neuroscience Research, 2010, 88, 1764-1776.	2.9	57
67	Enhanced GABAergic network and receptor function in pediatric cortical dysplasia Type IIB compared with Tuberous Sclerosis Complex. Neurobiology of Disease, 2012, 45, 310-321.	4.4	55
68	Functional Differences Between Direct and Indirect Striatal Output Pathways in Huntington's Disease. Journal of Huntington's Disease, 2012, 1, 17-25.	1.9	52
69	Pacemaker GABA synaptic activity may contribute to network synchronization in pediatric cortical dysplasia. Neurobiology of Disease, 2014, 62, 208-217.	4.4	50
70	Dopaminergic modulation of early signs of excitotoxicity in visualized rat neostriatal neurons. European Journal of Neuroscience, 1998, 10, 3491-3497.	2.6	46
71	Dissecting the contribution of individual receptor subunits to the enhancement of N-methyl-D-aspartate currents by dopamine D1 receptor activation in striatum. Frontiers in Systems Neuroscience, 2011, 5, 28.	2.5	46
72	Comparative study of cellular and synaptic abnormalities in brain tissue samples from pediatric tuberous sclerosis complex and cortical dysplasia type II. Epilepsia, 2010, 51, 160-165.	5.1	45

#	Article	IF	CITATIONS
73	Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington's disease. Neurobiology of Disease, 2017, 108, 29-44.	4.4	43
74	Enhanced GABAergic Inputs Contribute to Functional Alterations of Cholinergic Interneurons in the R6/2 Mouse Model of Huntington's Disease. ENeuro, 2015, 2, ENEURO.0008-14.2015.	1.9	42
75	Postnatal development of caudate input neurons in the cat. Journal of Comparative Neurology, 1983, 219, 51-69.	1.6	37
76	Changes in Expression of N-Methyl- <i>D</i> -Aspartate Receptor Subunits Occur Early in the R6/2 Mouse Model of Huntington's Disease. Developmental Neuroscience, 2006, 28, 230-238.	2.0	37
77	Rescuing the Corticostriatal Synaptic Disconnection in the R6/2 Mouse Model of Huntington's Disease: Exercise, Adenosine Receptors and Ampakines. PLOS Currents, 2010, 2, RRN1182.	1.4	37
78	Differential sensitivity of medium―and largeâ€sized striatal neurons to NMDA but not kainate receptor activation in the rat. European Journal of Neuroscience, 2001, 14, 1577-1589.	2.6	35
79	JAKMIP1, a Novel Regulator of Neuronal Translation, Modulates Synaptic Function and Autistic-like Behaviors in Mouse. Neuron, 2015, 88, 1173-1191.	8.1	34
80	Glutamate receptor-induced toxicity in neostriatal cells. Brain Research, 1996, 724, 205-212.	2.2	32
81	In Rasmussen Encephalitis, Hemichannels Associated with Microglial Activation are linked to Cortical Pyramidal Neuron Coupling: A Possible Mechanism for Cellular Hyperexcitability. CNS Neuroscience and Therapeutics, 2015, 21, 152-163.	3.9	30
82	Dye-Coupling in Human Neocortical Tissue Resected from Children with Intractable Epilepsy. Cerebral Cortex, 1993, 3, 95-107.	2.9	29
83	Agonist-induced morphologic decrease in cellular d1A dopamine receptor staining. Synapse, 1997, 27, 313-321.	1.2	29
84	Neuronal coupling via connexin36 contributes to spontaneous synaptic currents of striatal mediumâ€sized spiny neurons. Journal of Neuroscience Research, 2008, 86, 2147-2158.	2.9	28
85	Location, Location, Location: Contrasting Roles of Synaptic and Extrasynaptic NMDA Receptors in Huntington's Disease. Neuron, 2010, 65, 145-147.	8.1	28
86	Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease. Journal of Neuroscience, 2018, 38, 4678-4694.	3.6	28
87	Major Contribution of Somatostatin-Expressing Interneurons and Cannabinoid Receptors to Increased GABA Synaptic Activity in the Striatum of Huntington's Disease Mice. Frontiers in Synaptic Neuroscience, 2019, 11, 14.	2.5	28
88	Synaptic Dysfunction in Huntington's Disease: Lessons from Genetic Animal Models. Neuroscientist, 2022, 28, 20-40.	3.5	28
89	Striatal <scp>GABA</scp> ergic interneuron dysfunction in the Q175 mouse model of Huntington's disease. European Journal of Neuroscience, 2019, 49, 79-93.	2.6	27
90	Frontal cortical synaptic communication is abnormal in Disc1 genetic mouse models of schizophrenia. Schizophrenia Research, 2013, 146, 264-272.	2.0	26

#	Article	IF	CITATIONS
91	Forebrain Striatal-Specific Expression of Mutant Huntingtin Protein <i>in Vivo</i> Induces Cell-Autonomous Age-Dependent Alterations in Sensitivity to Excitotoxicity and Mitochondrial Function. ASN Neuro, 2011, 3, AN20110009.	2.7	25
92	Iontophoretic application of NMDA produces different types of excitatory responses in developing human cortical and caudate neurons. Neuroscience Letters, 1991, 126, 167-171.	2.1	24
93	Pyramidal cell responses to γâ€aminobutyric acid differ in type I and type II cortical dysplasia. Journal of Neuroscience Research, 2008, 86, 3151-3162.	2.9	24
94	Altered lactate metabolism in Huntington's disease is dependent on <scp>GLUT</scp> 3 expression. CNS Neuroscience and Therapeutics, 2018, 24, 343-352.	3.9	22
95	A Hypothesis Regarding the Pathogenesis and Epileptogenesis of Pediatric Cortical Dysplasia and Hemimegalencephaly Based on MRI Cerebral Volumes and NeuN Cortical Cell Densities. Epilepsia, 2007, 48, 74-78.	5.1	21
96	Synaptic pathology in Huntington's disease: Beyond the corticostriatal pathway. Neurobiology of Disease, 2022, 162, 105574.	4.4	21
97	Sex-Specific Life Course Changes in the Neuro-Metabolic Phenotype of Glut3 Null Heterozygous Mice: Ketogenic Diet Ameliorates Electroencephalographic Seizures and Improves Sociability. Endocrinology, 2017, 158, 936-949.	2.8	20
98	Neuronal Network Topology Indicates Distinct Recovery Processes after Stroke. Cerebral Cortex, 2020, 30, 6363-6375.	2.9	20
99	Neural Deletion of Glucose Transporter Isoform 3 Creates Distinct Postnatal and Adult Neurobehavioral Phenotypes. Journal of Neuroscience, 2018, 38, 9579-9599.	3.6	19
100	Quantitative Electroencephalographic Biomarkers in Preclinical and Human Studies of Huntington's Disease: Are They Fit-for-Purpose for Treatment Development?. Frontiers in Neurology, 2017, 8, 91.	2.4	18
101	Gain Modulation by Corticostriatal and Thalamostriatal Input Signals during Reward-Conditioned Behavior. Cell Reports, 2019, 29, 2438-2449.e4.	6.4	18
102	Cortical Network Dynamics Is Altered in Mouse Models of Huntington's Disease. Cerebral Cortex, 2020, 30, 2372-2388.	2.9	18
103	Partial Amelioration of Peripheral and Central Symptoms of Huntington's Disease via Modulation of Lipid Metabolism. Journal of Huntington's Disease, 2016, 5, 65-81.	1.9	17
104	Altered membrane properties and firing patterns of external globus pallidus neurons in the R6/2 mouse model of Huntington's disease. Journal of Neuroscience Research, 2016, 94, 1400-1410.	2.9	17
105	Therapeutic effects of stem cells in rodent models of Huntington's disease: Review and electrophysiological findings. CNS Neuroscience and Therapeutics, 2018, 24, 329-342.	3.9	17
106	Dopamine Reduction of GABA Currents in Striatal Medium-sized Spiny Neurons is Mediated Principally by the D1 Receptor Subtype. Neurochemical Research, 2007, 32, 229-240.	3.3	15
107	Differential Synaptic and Extrasynaptic Glutamate-Receptor Alterations in Striatal Medium-Sized Spiny Neurons of Aged YAC128 Huntington's Disease Mice. PLOS Currents, 2014, 6, .	1.4	14
108	Electrophysiological alterations in subthalamic neurons after unilateral dopamine depletion in the rat. Journal of Neuroscience Research, 2005, 80, 203-210.	2.9	13

#	Article	IF	CITATIONS
109	Activation, Proliferation and Commitment of Endogenous Stem/Progenitor Cells to the Oligodendrocyte Lineage by TS1 in a Rat Model of Dysmyelination. Developmental Neuroscience, 2006, 28, 488-498.	2.0	13
110	Cellular antiseizure mechanisms of everolimus in pediatric tuberous sclerosis complex, cortical dysplasia, and non–mTORâ€mediated etiologies. Epilepsia Open, 2018, 3, 180-190.	2.4	13
111	Striatal Excitatory Amino Acid Receptor Subunit Expression in the D _{1A} -Dopamine Receptor-Deficient Mouse. Developmental Neuroscience, 1998, 20, 237-241.	2.0	12
112	Age-Dependent Biphasic Changes in Ischemic Sensitivity in the Striatum of Huntington's Disease R6/2 Transgenic Mice. Journal of Neurophysiology, 2005, 93, 758-765.	1.8	11
113	White Matter Loss in a Mouse Model of Periventricular Leukomalacia Is Rescued by Trophic Factors. Brain Sciences, 2013, 3, 1461-1482.	2.3	10
114	Paroxysmal Discharges in Tissue Slices From Pediatric Epilepsy Surgery Patients: Critical Role of GABAB Receptors in the Generation of Ictal Activity. Frontiers in Cellular Neuroscience, 2020, 14, 54.	3.7	10
115	Enhanced sensitivity to Nâ€methylâ€Dâ€aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease. Journal of Neuroscience Research, 1999, 58, 515-532.	2.9	10
116	Abnormal brain metabolism as a biomarker for evaluating therapeutic approaches in Huntington's disease. Future Neurology, 2012, 7, 527-530.	0.5	8
117	Complete but not partial inhibition of glutamate transporters exacerbates cortical excitability in the R6/2 mouse model of Huntington's disease. CNS Neuroscience and Therapeutics, 2019, 25, 509-518.	3.9	7
118	Mechanisms underlying the enhancement of γâ€aminobutyric acid responses in the external globus pallidus of R6/2 Huntington's disease model mice. Journal of Neuroscience Research, 2020, 98, 2349-2356.	2.9	6
119	Early impairment of thalamocortical circuit activity and coherence in a mouse model of Huntington's disease. Neurobiology of Disease, 2021, 157, 105447.	4.4	5
120	Calcium dysregulation and compensation in cortical pyramidal neurons of the R6/2 mouse model of Huntington's disease. Journal of Neurophysiology, 2021, 126, 1159-1171.	1.8	5
121	Alterations in Corticostriatal Synaptic Function in Huntington's and Parkinson's Diseases. Handbook of Behavioral Neuroscience, 2010, , 607-623.	0.7	4
122	Epilepsy in Other Neurodegenerative Disorders: Huntington's and Parkinson's Diseases. , 2017, , 1043-1058.		4
123	2B or Not 2B: A Tail of Two NMDA Receptor Subunits. Neuron, 2012, 74, 426-428.	8.1	3
124	Cognitive Deficits in Huntington's Disease: Insights from Animal Models. Current Translational Geriatrics and Experimental Gerontology Reports, 2012, 1, 29-38.	0.7	3
125	Rasmussen encephalitis tissue transfer program. Epilepsia, 2016, 57, 1005-1007.	5.1	3
126	Neurophysiological Assessment of Huntington's Disease Model Mice. Methods in Molecular Biology, 2018. 1780. 163-177.	0.9	3

#	Article	IF	CITATIONS
127	Dopamine and Glutamate in Huntington's Disease. , 2005, , 539-565.		3
128	Epileptogenesis and Cortical Dysplasias. , 2010, , 353-357.		2
129	Dysfunctional channels are making noise in CAG triplet repeat disorders. Experimental Neurology, 2006, 202, 267-270.	4.1	1
130	Adult glut3 homozygous null mice survive to demonstrate neural excitability and altered neurobehavioral responses reminiscent of neurodevelopmental disorders. Experimental Neurology, 2021, 338, 113603.	4.1	1
131	Dopamine Receptor Modulation of Glutamatergic Neurotransmission. , 2010, , 281-302.		1
132	Electrophysiological Analysis of Movement Disorders in Mice. Neuromethods, 2011, , 221-239.	0.3	0
133	ENPP1 Enzyme Replacement Prevents the Osteomalacia and Paradoxical Mineralization in the Enpp1 asj/asj mouse model of Autosomal Recessive Hypophosphatemic Rickets Typeâ€2 FASEB Journal, 2018, 32, 816.13.	0.5	0
134	Synaptic Alterations in Genetic Mouse Models of Huntington's and Parkinson's Diseases: Is there a Common Thread?. , 2005, , 361-370.		0