Yoshiki Chujo

List of Publications by Citations

Source: https://exaly.com/author-pdf/1763914/yoshiki-chujo-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 768
 23,217
 70
 108

 papers
 citations
 h-index
 g-index

 805
 25,208
 4.3
 7.51

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
768	Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. <i>Journal of the American Chemical Society</i> , 2004 , 126, 3026-7	16.4	506
767	Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). <i>Journal of Materials Chemistry</i> , 2012 , 22, 1733-1746		387
766	New Polymeric Materials Based on Element-Blocks. <i>Bulletin of the Chemical Society of Japan</i> , 2015 , 88, 633-643	5.1	266
765	Functionalization of boron diiminates with unique optical properties: multicolor tuning of crystallization-induced emission and introduction into the main chain of conjugated polymers. <i>Journal of the American Chemical Society</i> , 2014 , 136, 18131-9	16.4	262
764	Control of Crystal Nucleation and Growth of Calcium Carbonate by Synthetic Substrates. <i>Chemistry of Materials</i> , 2001 , 13, 3245-3259	9.6	255
763	Extension of Conjugation Length via the Vacant p-Orbital of the Boron Atom. Synthesis of Novel Electron Deficient Conjugated Systems by Hydroboration Polymerization and Their Blue Light Emission. <i>Journal of the American Chemical Society</i> , 1998 , 120, 5112-5113	16.4	250
762	Solid-State Emission of the Anthracene-o-Carborane Dyad from the Twisted-Intramolecular Charge Transfer in the Crystalline State. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 254-259	16.4	235
761	Planar chiral tetrasubstituted [2.2]paracyclophane: optical resolution and functionalization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3350-3	16.4	230
760	Emission via Aggregation of Alternating Polymers with o-Carborane and p-Phenylene E thynylene Sequences. <i>Macromolecules</i> , 2009 , 42, 1418-1420	5.5	218
759	Reversible gelation of polyoxazoline by means of Diels-Alder reaction. <i>Macromolecules</i> , 1990 , 23, 2636	-2 6.4 1	215
75 ⁸	Organic polymer hybrids with silica gel formed by means of the sol-gel method 1992 , 11-29		214
757	o-Carborane-based anthracene: a variety of emission behaviors. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5084-7	16.4	208
756	Multicolor tuning of aggregation-induced emission through substituent variation of diphenyl-o-carborane. <i>Journal of Organic Chemistry</i> , 2011 , 76, 316-9	4.2	204
755	Facile generation of a reactive palladium(II) enolate intermediate by the decarboxylation of palladium(II) .betaketocarboxylate and its utilization in allylic acylation. <i>Journal of the American Chemical Society</i> , 1980 , 102, 6381-6384	16.4	194
754	Advanced luminescent materials based on organoboron polymers. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 1235-55	4.8	184
753	Effect of Anionic Starburst Dendrimers on the Crystallization of CaCO3 in Aqueous Solution: Size Control of Spherical Vaterite Particles. <i>Langmuir</i> , 2002 , 18, 3655-3658	4	182
75²	Highly emissive boron ketoiminate derivatives as a new class of aggregation-induced emission fluorophores. <i>Chemistry - A European Journal</i> , 2013 , 19, 4506-12	4.8	167

(2001-2000)

75 ¹	Thermally Reversible IPN OrganicIhorganic Polymer Hybrids Utilizing the DielsAlder Reaction. <i>Macromolecules</i> , 2000 , 33, 4343-4346	5.5	167
75°	EConjugated Organoboron Polymers via the Vacant p-Orbital of the Boron Atom. <i>Polymer Journal</i> , 2008 , 40, 77-89	2.7	163
749	Mechanofluorochromic materials based on aggregation-induced emission-active boron ketoiminates: regulation of the direction of the emission color changes. <i>Chemistry - A European Journal</i> , 2015 , 21, 7231-7	4.8	153
748	Through-space conjugated polymers based on cyclophanes. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 6430-7	16.4	146
747	POSS Ionic Liquid. Journal of the American Chemical Society, 2010 , 132, 17649-51	16.4	143
746	Boron diiminate with aggregation-induced emission and crystallization-induced emission-enhancement characteristics. <i>Chemistry - A European Journal</i> , 2014 , 20, 8320-4	4.8	133
745	OrganicIhorganic Polymer Hybrids Using Polyoxazoline Initiated by Functionalized Silsesquioxane. <i>Macromolecules</i> , 2003 , 36, 867-875	5.5	133
744	Poly(p-phenylene-borane)s. Novel Organoboron EConjugated Polymers via Grignard Reagent. <i>Journal of the American Chemical Society</i> , 1998 , 120, 10776-10777	16.4	126
743	Recent progress of optical functional nanomaterials based on organoboron complexes with this based on the bas	10.3	125
742	Highly luminescent BODIPY-based organoboron polymer exhibiting supramolecular self-assemble structure. <i>Journal of the American Chemical Society</i> , 2008 , 130, 15276-8	16.4	122
741	OrganicIhorganic polymer hybrids prepared by the sol-gel method. <i>Composite Interfaces</i> , 2005 , 11, 539-	56.6	121
74º	StructureBroperty relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5690-5697	2.5	114
739	OrganicIhorganic hybrid materials. Current Opinion in Solid State and Materials Science, 1996, 1, 806-811	12	114
738	Synthesis of Novel Stable Nanometer-Sized Metal (M = Pd, Au, Pt) Colloids Protected by a EConjugated Polymer. <i>Langmuir</i> , 2002 , 18, 277-283	4	113
737	Luminescent and Axially Chiral Econjugated Polymers Linked by Carboranes in the Main Chain. <i>Macromolecules</i> , 2009 , 42, 9238-9242	5.5	111
736	Polyoxazoline having a coumarin moiety as a pendant group. Synthesis and photogelation. <i>Macromolecules</i> , 1990 , 23, 2693-2697	5.5	108
735	Econjugated Organoboron Polymer as an Anion Sensor. <i>Polymer Journal</i> , 2002 , 34, 967-969	2.7	107
734	Preparation of a novel core-shell nanostructured gold colloid-silk fibroin bioconjugate by the protein in situ redox technique at room temperature. <i>Chemical Communications</i> , 2001 , 2518-9	5.8	103

733	Development of Solid-State Emissive Materials Based on Multifunctional o-Carborane-Pyrene Dyads. <i>Organic Letters</i> , 2016 , 18, 4064-7	6.2	101
732	Iron(II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel. <i>Macromolecules</i> , 1993 , 26, 6315-6319	5.5	100
731	Recent progress in the development of advanced element-block materials. <i>Polymer Journal</i> , 2018 , 50, 109-126	2.7	94
730	A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s. <i>Langmuir</i> , 2007 , 23, 12086-95	4	94
729	The effect of an anionic starburst dendrimer on the crystallization of CaCO3 in aqueous solution. <i>Chemical Communications</i> , 1999 , 1931-1932	5.8	94
728	Control of aggregation-induced emission versus fluorescence aggregation-caused quenching by bond existence at a single site in boron pyridinoiminate complexes. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1573-1579	7.8	92
727	Synthesis of Polystyrene and Silica Gel Polymer Hybrids Utilizing Ionic Interactions. <i>Chemistry of Materials</i> , 1999 , 11, 1719-1726	9.6	92
726	Luminescent m-Carborane-Based Econjugated Polymer. <i>Macromolecules</i> , 2009 , 42, 2925-2930	5.5	91
725	Synthesis of OrganicIhorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of RutheniumBipyridyl Complex. <i>Macromolecules</i> , 2002 , 35, 334-338	5.5	91
724	Aromatic Ring-Fused BODIPY-Based Conjugated Polymers Exhibiting Narrow Near-Infrared Emission Bands. <i>Macromolecules</i> , 2010 , 43, 193-200	5.5	90
723	Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane. <i>Macromolecules</i> , 1993 , 26, 5681-5686	5.5	90
722	Self-Organization of Spherical Aggregates of Palladium Nanoparticles with a Cubic Silsesquioxane. <i>Nano Letters</i> , 2002 , 2, 1183-1186	11.5	89
721	Synthesis and Properties of First Well-Defined Phosphole-Containing Econjugated Polymers. <i>Macromolecules</i> , 2003 , 36, 2594-2597	5.5	86
720	Poly(Eglutamic acid) Hydrogels with Water-Sensitive Luminescence Derived from Aggregation-Induced Emission of o-Carborane. <i>Macromolecules</i> , 2010 , 43, 6463-6468	5.5	85
719	Synthesis of Novel ©onjugated Polymers Having [2.2]Paracyclophane Skeleton in the Main Chain. Extension of ©onjugated Length via the Through-Space. <i>Macromolecules</i> , 2002 , 35, 587-589	5.5	85
718	Environment-responsive upconversion based on dendrimer-supported efficient triplet-triplet annihilation in aqueous media. <i>Chemical Communications</i> , 2010 , 46, 4378-80	5.8	84
717	Highly intense fluorescent diarylboron diketonate. <i>Journal of Organic Chemistry</i> , 2008 , 73, 8605-7	4.2	82
716	Synthesis of polystyrene and silica gel polymer hybrids via Interactions. <i>Chemical Communications</i> , 1998 , 1131-1132	5.8	81

(2014-2020)

715	Recent Progress in the Development of Solid-State Luminescent o-Carboranes with Stimuli Responsivity. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9841-9855	16.4	81
714	Optically active cyclic compounds based on planar chiral [2.2]paracyclophane: extension of the conjugated systems and chiroptical properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 521-529	7.1	79
713	1,3-Diketone-Based Organoboron Polymers: Emission by Extending EConjugation along a Polymeric Ligand. <i>Macromolecules</i> , 2008 , 41, 8295-8298	5.5	78
712	Water-soluble anionic POSS-core dendrimer: synthesis and copper(II) complexes in aqueous solution. <i>Langmuir</i> , 2007 , 23, 9057-63	4	78
711	Cyclophane-containing polymers. <i>Progress in Polymer Science</i> , 2008 , 33, 346-364	29.6	77
710	Enhancement of entrapping ability of dendrimers by a cubic silsesquioxane core. <i>Organic and Biomolecular Chemistry</i> , 2008 , 6, 3899-901	3.9	76
709	Synthesis and redox gelation of disulfide-modified polyoxazoline. <i>Macromolecules</i> , 1993 , 26, 883-887	5.5	76
708	Synthesis of OrganicIhorganic Polymer Hybrids Controlled by DielsAlder Reaction. <i>Macromolecules</i> , 2004 , 37, 9793-9797	5.5	75
707	Conjugated Polymers Based on Tautomeric Units: Regulation of Main-Chain Conjugation and Expression of Aggregation Induced Emission Property via Boron-Complexation. <i>Macromolecules</i> , 2014 , 47, 2268-2278	5.5	74
706	Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals. <i>Polymer Journal</i> , 2010 , 42, 58-65	2.7	74
7°5	Cobalt(III) bipyridyl-branched polyoxazoline complex as a thermally and redox reversible hydrogel. <i>Macromolecules</i> , 1993 , 26, 6320-6323	5.5	74
704	A Flexible, Fused, Azomethine-Boron Complex: Thermochromic Luminescence and Thermosalient Behavior in Structural Transitions between Crystalline Polymorphs. <i>Chemistry - A European Journal</i> , 2017 , 23, 11827-11833	4.8	73
703	Role of solvent dielectric properties on charge transfer from PbS nanocrystals to molecules. <i>Nano Letters</i> , 2010 , 10, 318-23	11.5	73
702	Polymer hybrids of functionalized silsesquioxanes and organic polymers utilizing the solgel reaction of tetramethoxysilane. <i>Polymer</i> , 2002 , 43, 1171-1175	3.9	72
701	Synthesis and Properties of a Novel Through-Space Conjugated Polymer with [2.2]Paracyclophane and Ferrocene in the Main Chain. <i>Macromolecules</i> , 2003 , 36, 9319-9324	5.5	72
700	Control of pore size of porous silica by means of pyrolysis of an organicIhorganic polymer hybrid. Journal of the Chemical Society Chemical Communications, 1994 , 635-636		71
699	Formation of stable vaterite with poly(acrylic acid) by the delayed addition method. <i>Langmuir</i> , 2006 , 22, 7760-7	4	70
698	EConjugated Polymers Composed of BODIPY or Aza-BODIPY Derivatives Exhibiting High Electron Mobility and Low Threshold Voltage in Electron-Only Devices. <i>Macromolecules</i> , 2014 , 47, 2316-2323	5.5	69

697	Highly-efficient solid-state emissions of anthracene®-carborane dyads with various substituents and their thermochromic luminescence properties. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10047-100	54 1	69	
696	Synthesis and Properties of Novel Through-Space EConjugated Polymers Based on Poly(p-phenylenevinylene)s Having a [2.2]Paracyclophane Skeleton in the Main Chain. <i>Macromolecules</i> , 2002 , 35, 7872-7877	5.5	69	
695	Synthesis of Organoboron Quinoline-8-thiolate and Quinoline-8-selenolate Complexes and Their Incorporation into the Econjugated Polymer Main-Chain. <i>Macromolecules</i> , 2009 , 42, 2988-2993	5.5	68	
694	Luminescent Organoboron Conjugated Polymers. <i>Chemistry Letters</i> , 2010 , 39, 430-435	1.7	68	
693	A novel silane coupling agent. 1. Synthesis of trimethoxysilyl-terminated poly(N-acetylethylenimine). <i>Macromolecules</i> , 1989 , 22, 2040-2043	5.5	68	
692	Creative Synthesis of OrganicIhorganic Molecular Hybrid Materials. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 463-474	5.1	67	
691	A luminescent coordination polymer based on bisterpyridyl ligand containing o-carborane: two tunable emission modes. <i>Dalton Transactions</i> , 2011 , 40, 1919-23	4.3	67	
690	Efficient simultaneous emission from RGB-emitting organoboron dyes incorporated into organicIhorganic hybrids and preparation of white light-emitting materials. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4437	7.1	66	
689	Synthesis of silver dendritic nanostructures protected by tetrathiafulvalene. <i>Chemical Communications</i> , 2002 , 1300-1	5.8	66	
688	Synthesis of Organoboron Econjugated Polymers by Hydroboration Polymerization between Heteroaromatic Diynes and Mesitylborane and Their Light Emitting Properties. <i>Macromolecules</i> , 1999 , 32, 4467-4469	5.5	66	
687	Organic-inorganic polymer hybrids. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1992 , 64, 1-9		66	
686	Through-space conjugated polymers consisting of [2.2]paracyclophane. <i>Polymer Chemistry</i> , 2011 , 2, 124	· 9 4.9	65	
685	Synthesis of Optically Active, X-Shaped, Conjugated Compounds and Dendrimers Based on Planar Chiral [2.2]Paracyclophane, Leading to Highly Emissive Circularly Polarized Luminescence. <i>Chemistry - A European Journal</i> , 2016 , 22, 2291-8	4.8	65	
684	Metal-free synthesis of responsive polymers: Cloud point tuning by controlled Elick[reaction. Journal of Polymer Science Part A, 2010 , 48, 1278-1286	2.5	64	
683	Spherical, Polyfunctional Molecules Using Poly(bromophenylsilsesquioxane)s as Nanoconstruction Sites. <i>Macromolecules</i> , 2005 , 38, 4655-4660	5.5	64	
682	Synthesis of poly(vinylene-arsine)s: alternating radical copolymerization of arsenic atomic biradical equivalent and phenylacetylene. <i>Journal of the American Chemical Society</i> , 2002 , 124, 6600-3	16.4	64	
681	Facile Modulation of Optical Properties of Diketonate-Containing Polymers by Regulating Complexation Ratios with Boron. <i>Macromolecules</i> , 2013 , 46, 2969-2975	5.5	63	
68o	Monitoring of biological one-electron reduction by (19)F NMR using hypoxia selective activation of an (19)F-labeled indolequinone derivative. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15982-3	16.4	63	

(2015-2000)

679	Time-Resolved Dynamic Light Scattering Study on the Dynamics of Silica Gels during Gelation Process. <i>Macromolecules</i> , 2000 , 33, 900-905	5.5	63	
678	Tuning of Properties of POSS-Condensed Water-Soluble Network Polymers by Modulating the Cross-Linking Ratio between POSS. <i>Macromolecules</i> , 2009 , 42, 3489-3492	5.5	62	
677	Multi-modal 19F NMR probe using perfluorinated cubic silsesquioxane-coated silica nanoparticles for monitoring enzymatic activity. <i>Chemical Communications</i> , 2008 , 6176-8	5.8	61	
676	Nanoparticles via H-aggregation of amphiphilic BODIPY dyes. <i>Tetrahedron Letters</i> , 2010 , 51, 3451-3454	2	60	
675	Development of solid-state emissive o-carboranes and theoretical investigation of the mechanism of the aggregation-induced emission behaviors of organoboron "element-blocks". <i>Faraday Discussions</i> , 2017 , 196, 31-42	3.6	59	
674	Synthesis and Properties of Novel Econjugated Polymers with Alternating Organosilicon and [2.2]Paracyclophane Units in the Main Chain. <i>Organometallics</i> , 2003 , 22, 3553-3557	3.8	59	
673	Modulation of sensitivity to mechanical stimulus in mechanofluorochromic properties by altering substituent positions in solid-state emissive diiodo boron diiminates. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5314-5319	7.1	59	
672	A Highly Efficient Near-Infrared-Emissive Copolymer with a N=N Double-Bond Econjugated System Based on a Fused Azobenzene-Boron Complex. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 65	46-655	i1 ⁵⁸	
671	Synthesis of Methyl-Substituted Main-Chain-Type Organoboron Quinolate Polymers and Their Emission Color Tuning. <i>Macromolecules</i> , 2008 , 41, 2809-2813	5.5	58	
670	Tetrathiafulvalene-Assisted Formation of Silver Dendritic Nanostructures in Acetonitrile. <i>Langmuir</i> , 2003 , 19, 6242-6246	4	58	
669	Temperature-Dependent Reversible Self-Assembly of Gold Nanoparticles into Spherical Aggregates by Molecular Recognition between Pyrenyl and Dinitrophenyl Units. <i>Langmuir</i> , 2003 , 19, 5496-5501	4	58	
668	New Preparation Methods for OrganicIhorganic Polymer Hybrids. MRS Bulletin, 2001 , 26, 389-392	3.2	58	
667	Synthesis of Poly(N,N-dimethylacrylamide)/Silica Gel Polymer Hybrids by in situ Polymerization Method. <i>Polymer Journal</i> , 1998 , 30, 60-65	2.7	58	
666	Concept of Excitation-Driven Boron Complexes and Their Applications for Functional Luminescent Materials. <i>Bulletin of the Chemical Society of Japan</i> , 2019 , 92, 7-18	5.1	58	
665	Planar-chiral through-space conjugated oligomers: synthesis and characterization of chiroptical properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 8386-90	4.8	57	
664	Preparation, Optical Spectroscopy, and Electrochemical Studies of Novel Econjugated Polymer-Protected Stable PbS Colloidal Nanoparticles in a Nonaqueous Solution. <i>Langmuir</i> , 2002 , 18, 5287-5292	4	57	
663	Solid-State Emission of the Anthracene-o-Carborane Dyad from the Twisted-Intramolecular Charge Transfer in the Crystalline State. <i>Angewandte Chemie</i> , 2017 , 129, 260-265	3.6	56	
662	Film-type chemosensors based on boron diiminate polymers having oxidation-induced emission properties. <i>Polymer Chemistry</i> , 2015 , 6, 5590-5595	4.9	56	

661	Unique properties of amphiphilic POSS and their applications. <i>Polymer Journal</i> , 2013 , 45, 247-254	2.7	56
660	Synthesis and properties of thiophene-fused benzocarborane. <i>Chemistry - A European Journal</i> , 2012 , 18, 11251-7	4.8	56
659	Robust Polyaromatic Octasilsesquioxanes from Polybromophenylsilsesquioxanes, BrxOPS, via Suzuki Coupling. <i>Macromolecules</i> , 2005 , 38, 4661-4665	5.5	56
658	Synthesis of anthracene-stacked oligomers and polymer. <i>Organic Letters</i> , 2010 , 12, 3188-91	6.2	55
657	Novel [2.2]Paracyclophane E luorene-Based Conjugated Copolymers: Synthesis, Optical, and Electrochemical Properties. <i>Macromolecules</i> , 2004 , 37, 4099-4103	5.5	55
656	Liquid-crystalline organicIhorganic hybrid polymers with functionalized silsesquioxanes. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 4035-4043	2.5	55
655	Preparation and enzymic activity of poly[(N-acylimino)ethylene]-modified catalase. <i>Macromolecules</i> , 1990 , 23, 3201-3205	5.5	55
654	Effective Light-Harvesting Antennae Based on BODIPY-Tethered Cardo Polyfluorenes via Rapid Energy Transferring and Low Concentration Quenching. <i>Macromolecules</i> , 2013 , 46, 2599-2605	5.5	54
653	Effect of Gold Nanoparticles as a Support for the Oligomerization of l-Cysteine in an Aqueous Solution. <i>Langmuir</i> , 2003 , 19, 5546-5549	4	54
652	Hydroboration polymerization. 1. Synthesis of organoboron polymers by polyaddition between diene and monoalkylborane. <i>Macromolecules</i> , 1991 , 24, 345-348	5.5	54
651	Through-space conjugated polymers consisting of planar chiral pseudo-ortho-linked [2.2]paracyclophane. <i>Polymer Chemistry</i> , 2012 , 3, 2727	4.9	53
650	Preparation for highly sensitive MRI contrast agents using core/shell type nanoparticles consisting of multiple SPIO cores with thin silica coating. <i>Langmuir</i> , 2010 , 26, 11759-62	4	53
649	Synthesis and Photostability of Poly(p-phenylenevinylene-borane)s. <i>Macromolecules</i> , 2009 , 42, 7217-72	29 .5	53
648	o-Carborane-Based Anthracene: A Variety of Emission Behaviors. <i>Angewandte Chemie</i> , 2015 , 127, 5173	-5 <u>3</u> .766	52
647	Functional polymers based on electron-donating TTF and derivatives. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4122		52
646	OrganicIhorganic hybrid gels having functionalized silsesquioxanes. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1384-1391		52
645	Hydrocarbon separation via porous glass membranes surface-modified using organosilane compounds. <i>Journal of Membrane Science</i> , 2001 , 182, 139-149	9.6	52
644	Photogelation and redox properties of anthracene-disulfide-modified polyoxazolines. <i>Macromolecules</i> , 1993 , 26, 5611-5614	5.5	52

(2000-1992)

643	Hydroboration polymerization of dicyano compounds. 1. Synthesis of boron-containing polymers by the reaction between t-BuBH2.cntdot.NMe3 and dicyano compounds. <i>Macromolecules</i> , 1992 , 25, 27-32	5.5	52
642	Synthesis of nonionic hydrogel, lipogel, and amphigel by copolymerization of 2-oxazolines and a bisoxazoline. <i>Macromolecules</i> , 1990 , 23, 1234-1237	5.5	52
641	Boron-ketoiminate-based polymers: fine-tuning of the emission color and expression of strong emission both in the solution and film States. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1315-9	4.8	51
640	Synthesis of Estacked Polymers on the Basis of [2.2]Paracyclophane. <i>Bulletin of the Chemical Society of Japan</i> , 2009 , 82, 1070-1082	5.1	51
639	Colour-tunable aggregation-induced emission of trifunctional o-carborane dyes. <i>New Journal of Chemistry</i> , 2014 , 38, 5686-5690	3.6	50
638	Facile control of silica shell layer thickness on hydrophilic iron oxide nanoparticles via reverse micelle method. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 336, 46-56	5.1	50
637	Side-chain effect of octa-substituted POSS fillers on refraction in polymer composites. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 5712-5717	2.5	50
636	Main-Chain-Type Organoboron Quinolate Polymers: Synthesis and Photoluminescence Properties. <i>Macromolecules</i> , 2007 , 40, 6-8	5.5	50
635	Oxygen-Bridged Diphenylnaphthylamine as a Scaffold for Full-Color Circularly Polarized Luminescent Materials. <i>Journal of Organic Chemistry</i> , 2017 , 82, 5242-5249	4.2	49
634	Synthesis of sulfonic acid-containing POSS and its filler effects for enhancing thermal stabilities and lowering melting temperatures of ionic liquids. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 624-630	13	49
633	Luminescence Color Tuning from Blue to Near Infrared of Stable Luminescent Solid Materials Based on Bis-o-Carborane-Substituted Oligoacenes. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2134-2138	4.5	49
632	Synthesis of Novel Alternating EConjugated Copolymers Having [2.2]Paracyclophane and Fluorene Units in the Main Chain Leading to the Blue Light-Emitting Materials. <i>Chemistry Letters</i> , 2002 , 31, 194-19	95.7	49
631	Preparation of Econjugated polymer-protected gold nanoparticles in stable colloidal form. <i>Chemical Communications</i> , 2001 , 613-614	5.8	49
630	Chemicals-Inspired Biomaterials: Developing Biomaterials Inspired by Material Science Based on POSS. <i>Bulletin of the Chemical Society of Japan</i> , 2013 , 86, 1231-1239	5.1	48
629	Thermodynamic study of POSS-based ionic liquids with various numbers of ion pairs. <i>Polymer Journal</i> , 2011 , 43, 708-713	2.7	48
628	Main-Chain-Type N,N?-Chelate Organoboron Aminoquinolate Polymers: Synthesis, Luminescence, and Energy Transfer Behavior. <i>Macromolecules</i> , 2008 , 41, 3488-3492	5.5	48
627	Biomedical applications of imidazolium cation-modified iron oxide nanoparticles. <i>Polymers for Advanced Technologies</i> , 2008 , 19, 1421-1429	3.2	48
626	A Polymer with Two Different Redox Centers in the EConjugated Main Chain: Alternate Combinations of Ferrocene and Dithiafulvene. <i>Macromolecules</i> , 2000 , 33, 6965-6969	5.5	48

625	Enhancement and Controlling the Signal of Circularly Polarized Luminescence Based on a Planar Chiral Tetrasubstituted [2.2]Paracyclophane Framework in Aggregation System. <i>Macromolecules</i> , 2017 , 50, 1790-1802	5.5	47
624	Modulation of luminescence chromic behaviors and environment-responsive intensity changes by substituents in bis-o-carborane-substituted conjugated molecules. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 573-579	7.8	47
623	Heat-Resistant Mechanoluminescent Chromism of the Hybrid Molecule Based on Boron Ketoiminate Modified Octasubstituted Polyhedral Oligomeric Silsesquioxane. <i>Chemistry - A</i> <i>European Journal</i> , 2017 , 23, 1409-1414	4.8	47
622	Synthesis and Properties of [2.2]Paracyclophane-Layered Polymers. <i>Macromolecules</i> , 2008 , 41, 5960-59	63 .5	47
621	Synthesis of organic-inorganic star-shaped polyoxazolines using octafunctional silsesquioxane as an initiator. <i>Polymer Bulletin</i> , 2003 , 49, 341-348	2.4	47
620	Neutral Alkoxysilanes from Silica. <i>Journal of the American Chemical Society</i> , 2000 , 122, 10063-10072	16.4	47
619	Facilitated dpt Transition in a Novel Organoboron Econjugated Polymer Including a Ruthenium P hosphine Complex. <i>Organometallics</i> , 2001 , 20, 2425-2427	3.8	47
618	Planar Chiral [2.2]Paracyclophanes: Optical Resolution and Transformation to Optically Active Ebtacked Molecules. <i>Bulletin of the Chemical Society of Japan</i> , 2019 , 92, 265-274	5.1	47
617	Bimodal quantitative monitoring for enzymatic activity with simultaneous signal increases in 19F NMR and fluorescence using silica nanoparticle-based molecular probes. <i>Bioconjugate Chemistry</i> , 2011 , 22, 1484-90	6.3	46
616	Synthesis of poly(vinyl alcohol) / silica gel polymer hybrids by in-situ hydrolysis method. <i>Applied Organometallic Chemistry</i> , 1998 , 12, 755-762	3.1	46
615	Synthesis of poly(vinylidene fluoride) (PVdF)/silica hybrids having interpenetrating polymer network structure by using crystallization between PVdF chains. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 3543-3550	2.5	46
614	Nonenzymic oxidation of p-hydroxyphenylpyruvic acid with singlet oxygen to homogentisic acid. A model for the action of p-hydroxyphenylpyruvate hydroxylase. <i>Journal of the American Chemical Society</i> , 1975 , 97, 5272-7	16.4	46
613	Self-assembly of a family of suprametallomacrocycles: revisiting an o-carborane bisterpyridyl building block. <i>Dalton Transactions</i> , 2014 , 43, 9604-11	4.3	45
612	Highly near-infrared emissive boron di(iso)indomethene-based polymer: Drastic change from deep-red to near-infrared emission via quantitative polymer reaction. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 1726-1733	2.5	45
611	Highly Luminescent Nanoparticles: Self-Assembly of Well-Defined Block Copolymers by [] Stacked BODIPY Dyes as Only a Driving Force. <i>Macromolecules</i> , 2009 , 42, 5446-5452	5.5	45
610	Synthesis of IPN polymer hybrids of polystyrene gel and silica gel by an in-situ radical polymerization method. <i>Journal of Materials Chemistry</i> , 1998 , 8, 1113		45
609	Synthesis of organic-metal hybrid nanowires by cooperative self-organization of tetrathiafulvalene and metallic gold via charge-transfer. <i>Langmuir</i> , 2007 , 23, 3450-4	4	45
608	Construction of benzene ring-layered polymers. <i>Tetrahedron Letters</i> , 2005 , 46, 2533-2537	2	45

(2016-2000)

607	Control of crystal polymorphs by a la tent inductorlicrystallization of calcium carbonate in conjunction with in situ radical polymerization of sodium acrylate in aqueous solution. <i>Chemical Communications</i> , 2000 , 1537-1538	5.8	45	
606	Application of organic-inorganic polymer hybrids as selective gas permeation membranes. <i>Journal of Materials Chemistry</i> , 1999 , 9, 1741-1746		45	
605	Failure of tungsten carbide-cobalt alloy tools in machining of carbon materials. Wear, 1993 , 169, 135-14	103.5	45	
604	A novel nonionic hydrogel from 2-methyl-2-oxazoline. <i>Macromolecules</i> , 1989 , 22, 1074-1077	5.5	45	
603	BODIPY-based chain transfer agent: reversibly thermoswitchable luminescent gold nanoparticle stabilized by BODIPY-terminated water-soluble polymer. <i>Langmuir</i> , 2010 , 26, 15644-9	4	44	
602	Synthesis of New Main-Chain-Type Organoboron Quinolate Polymer Linked on Quinolate Ligand. <i>Macromolecules</i> , 2008 , 41, 737-740	5.5	44	
601	Synthesis of polystyrene/silica gel polymer hybrids by in-situ polymerization method. <i>Polymer Bulletin</i> , 1997 , 39, 303-310	2.4	43	
600	Synthesis and properties of the [2.2]paracyclophane-containing conjugated polymer with benzothiadiazole as an electron acceptor. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 5891-5899	2.5	43	
599	Novel Through-Space Conjugated Polymers Consisting of Alternate [2.2]Paracyclophane and Fluorene. <i>Bulletin of the Chemical Society of Japan</i> , 2005 , 78, 288-293	5.1	43	
598	Time-Resolved Dynamic Light Scattering Studies on Gelation Process of OrganicIhorganic Polymer Hybrids. <i>Macromolecules</i> , 1999 , 32, 1528-1533	5.5	43	
597	Isomerization Behavior of Azobenzene Chromophores Attached to the Side Chain of Organic Polymer in OrganicIhorganic Polymer Hybrids. <i>Macromolecules</i> , 1999 , 32, 1013-1017	5.5	43	
596	Aromatic Ring-Fused Carborane-Based Luminescent Econjugated Polymers. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1389-94	4.8	42	
595	Synthesis of Poly(oxyethylene)-Grafted Palladium Clusters. <i>Chemistry of Materials</i> , 1999 , 11, 849-851	9.6	42	
594	Block copolymer of 2-methyl-2-oxazoline with silica gel an organic-inorganic hybrid polymer. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1991 , 42-43, 303-312		42	
593	A copper(I)-bicarbonato complex. A water-stable reversible carbon dioxide carrier. <i>Journal of the American Chemical Society</i> , 1980 , 102, 431-433	16.4	42	
592	Diarylamino- and Diarylboryl-Substituted Donor-Acceptor Pyrene Derivatives: Influence of Substitution Pattern on Their Photophysical Properties. <i>Journal of Organic Chemistry</i> , 2017 , 82, 5111-51	12 ⁴ 1 ²	41	
591	New Types of Planar Chiral [2.2]Paracyclophanes and Construction of One-Handed Double Helices. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2524-7	4.5	41	
590	Sponge-Type Emissive Chemosensors for the Protein Detection Based on Boron Ketoiminate-Modifying Hydrogels with Aggregation-Induced Blueshift Emission Property. Macromolecular Chemistry and Physics, 2016 , 217, 414-421	2.6	41	

589	POSS fillers for modulating the thermal properties of ionic liquids. <i>RSC Advances</i> , 2013 , 3, 2422	3.7	41
588	Solid-State Thermochromic Luminescence through Twisted Intramolecular Charge Transfer and Excimer Formation of a Carborane Pyrene Dyad with an Ethynyl Spacer. <i>Asian Journal of Organic Chemistry</i> , 2017 , 6, 1818-1822	3	41
587	Reversible signal regulation system of 19F NMR by redox reactions using a metal complex as a switching module. <i>Bioorganic and Medicinal Chemistry</i> , 2009 , 17, 3818-23	3.4	41
586	Efficient light absorbers based on thiophene-fused boron dipyrromethene (BODIPY) dyes. <i>Bioorganic and Medicinal Chemistry</i> , 2013 , 21, 2715-9	3.4	40
585	Synthesis of OrganicIhorganic Polymer Hybrids by Means of HostIGuest Interaction Utilizing Cyclodextrin. <i>Macromolecules</i> , 2003 , 36, 654-660	5.5	40
584	Optically Active Phenylethene Dimers Based on Planar Chiral Tetrasubstituted [2.2]Paracyclophane. <i>Chemistry - A European Journal</i> , 2017 , 23, 6323-6329	4.8	39
583	Enhancement of affinity in molecular recognition via hydrogen bonds by POSS-core dendrimer and its application for selective complex formation between guanosine triphosphate and 1,8-naphthyridine derivatives. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 90-5	3.9	39
582	Microwave-assisted preparation of intense luminescent BODIPY-containing hybrids with high photostability and low leachability. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2985		39
581	Modulation of morphology and conductivity of mixed-valence tetrathiafulvalene nanofibers by coexisting organic acid anions. <i>Langmuir</i> , 2009 , 25, 6929-33	4	39
580	[2.2]Paracyclophane-Layered Polymers End-Capped with Fluorescence Quenchers. <i>Macromolecules</i> , 2009 , 42, 3656-3660	5.5	39
579	Highly near-infrared photoluminescence from aza-borondipyrromethene-based conjugated polymers. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 5348-5356	2.5	39
578	Ratiometric multimodal chemosensors based on cubic silsesquioxanes for monitoring solvent polarity. <i>Bioorganic and Medicinal Chemistry</i> , 2008 , 16, 10029-33	3.4	39
577	Synthetic Strategy for Low-Band Gap Oligomers and Homopolymers Using Characteristics of Thiophene-Fused Boron Dipyrromethene. <i>Macromolecules</i> , 2014 , 47, 3755-3760	5.5	38
576	Design of bond-cleavage-induced intramolecular charge transfer emission with dibenzoboroles and their application to ratiometric sensors for discriminating chain lengths of alkanes. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 2368-2375	7.8	38
575	Practical Optical Resolution of Planar Chiral Pseudo-ortho-disubstituted [2.2]Paracyclophane. <i>Chemistry Letters</i> , 2012 , 41, 990-992	1.7	38
574	Synthesis of Econjugated Polymers Containing Organoboron Benzo[h]quinolate in the Main Chain. <i>Macromolecules</i> , 2010 , 43, 6229-6233	5.5	38
573	Synthesis of New Fluorescent Organoboron Polymers Based on Pyrazaboles. <i>Macromolecules</i> , 2003 , 36, 5516-5519	5.5	38
572	Size-discrimination of volatile organic compounds utilizing gallium diiminate by luminescent chromism of crystallization-induced emission via encapsulation-triggered crystallirystal transition. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5564-5571	7.1	38

(2013-2017)

571	Enhancement of Aggregation-Induced Emission by Introducing Multiple o-Carborane Substitutions into Triphenylamine. <i>Molecules</i> , 2017 , 22,	4.8	37
570	PolyimideBilica Gel Hybrids Containing Metal Salts: Preparation via the Sol G el Reaction. <i>Applied Organometallic Chemistry</i> , 1997 , 11, 153-161	3.1	37
569	POSS ionic liquid crystals. NPG Asia Materials, 2015, 7, e174-e174	10.3	36
568	Thermally Stabilized Blue Luminescent Poly(p-phenylene)s Covered with Polyhedral Oligomeric Silsesquioxanes. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 86-92	4.8	36
567	Synthesis and optical properties of the [2.2]paracyclophane-containing Econjugated polymer with a diacetylene unit. <i>Polymer Bulletin</i> , 2002 , 49, 209-215	2.4	36
566	Design and Luminescence Chromism of Fused Boron Complexes Having Constant Emission Efficiencies in Solution and in the Amorphous and Crystalline States. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 5191-5196	3.2	35
565	Synthesis and optical properties of stable gallafluorene derivatives: investigation of their emission via triplet states. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4211-4	16.4	35
564	Improving Proton Relaxivity of Dendritic MRI Contrast Agents by Rigid Silsesquioxane Core. <i>Polymer Journal</i> , 2009 , 41, 287-292	2.7	35
563	Radical Copolymerization of Acetylenic Compounds with Phenyl-Substituted Cyclooligoarsine: Substituent Effect and Optical Properties. <i>Macromolecules</i> , 2004 , 37, 1271-1275	5.5	35
562	Macromolecular engineering on the basis of the polymerization of 2-oxazolines. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1991 , 51, 1-10		35
561	An Organic/Inorganic Hybrid Polymer. <i>Journal of Macromolecular Science Part A, Chemistry</i> , 1990 , 27, 1603-1612		35
560	Synthesis and characterization of heterofluorenes containing four-coordinated group 13 elements: theoretical and experimental analyses and comparison of structures, optical properties and electronic states. <i>Dalton Transactions</i> , 2015 , 44, 8697-707	4.3	34
559	1,4-Dihydro-1,4-diarsinine: Facile Synthesis via Nonvolatile Arsenic Intermediates by Radical Reactions. <i>Organometallics</i> , 2007 , 26, 1827-1830	3.8	34
558	Synthesis of a stimuli-responsive P-chiral polymer with chiral phosphorus atoms and azobenzene moieties in the main chain. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 397-402	4.5	34
557	Synthesis and Optical Properties of Novel Through-Space Econjugated Polymers Having a Dithia[3.3]metacyclophane Skeleton in the Main Chain. <i>Polymer Journal</i> , 2003 , 35, 501-506	2.7	34
556	Polymer Homologue of DMSO: Synthesis of Poly(ethylene sulfoxide) by Selective Oxidation of Poly(ethylene sulfide). <i>Macromolecules</i> , 1999 , 32, 5240-5242	5.5	34
555	o-Carborane-based biphenyl and p-terphenyl derivatives. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 1247-51	4.5	33
554	Rational design of polyhedral oligomeric silsesquioxane fillers for simultaneous improvements of thermomechanical properties and lowering refractive indices of polymer films. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 3583-3589	2.5	33

553	Energy transfer from aggregation-induced emissive o-carborane. <i>Tetrahedron Letters</i> , 2011 , 52, 293-29	62	33
552	Combined in Situ and Time-Resolved SANS and SAXS Studies of Chemical Reactions at Specific Sites and Self-Assembling Processes of Reaction Products: Reduction of Palladium Ions in Self-Assembled Polyamidoamine Dendrimers as a Template. <i>Macromolecules</i> , 2007 , 40, 4327-4337	5.5	33
551	Photochemical assembly of gold nanoparticles utilizing the photodimerization of thymine. <i>Langmuir</i> , 2004 , 20, 1972-6	4	33
550	EConjugated Poly(cyclodiborazane)s with Intramolecular Charge Transferred Structure. <i>Macromolecules</i> , 2000 , 33, 3956-3957	5.5	33
549	EConjugated Poly(dithiafulvene) by Cycloaddition Polymerization of Aldothioketene with Its Alkynethiol Tautomer. Polymerization, Optical Properties, and Electrochemical Analysis. <i>Macromolecules</i> , 1999 , 32, 4641-4646	5.5	33
548	Enantioselective Synthesis of Triple Helicenes by Cross-Cyclotrimerization of a Helicenyl Aryne and Alkynes via Dynamic Kinetic Resolution. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10025-100	336.4	32
547	Enhancement of optical properties of dyes for bioprobes by freezing effect of molecular motion using POSS-core dendrimers. <i>Bioorganic and Medicinal Chemistry</i> , 2012 , 20, 915-9	3.4	32
546	Electron-system-layered polymer: through-space conjugation and properties as a single molecular wire. <i>Chemistry - A European Journal</i> , 2012 , 18, 4216-24	4.8	32
545	Stabilized spherical aggregate of palladium nanoparticles prepared by reduction of palladium acetate in octa(3-aminopropyl)octasilsesquioxane as a rigid template. <i>Langmuir</i> , 2008 , 24, 2719-26	4	32
544	Synthesis of Poly(vinylenephosphine)s: Ring-Collapsed Radical Alternating Copolymerization of Methyl-Substituted Cyclooligophosphine with Acetylenic Compounds. <i>Macromolecules</i> , 2007 , 40, 4854-	4 § ₹8	32
543	Polymer hybrids with functionalized silsesquioxanes via two physical interactions in one system. Journal of Polymer Science Part A, 2003, 41, 1306-1315	2.5	32
542	Preparation of hydrophobic CaCO3 composite particles by mineralization with sodium trisilanolate in a methanol solution. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2449-2452		32
541	Synthesis of Econjugated Poly(dithiafulvene) by Cycloaddition Polymerization of Aldothioketene with Its Alkynethiol Tautomer. <i>Macromolecules</i> , 1998 , 31, 7570-7571	5.5	32
540	Syntheses of polyamide-poly(methyl methacrylate) graft copolymers by polycondensation reactions of macromonomers. <i>Polymer Bulletin</i> , 1981 , 5, 361	2.4	32
539	Synthesis and properties of highly-rigid conjugation system based on bi(benzo[b]thiophene)-fused o-carborane. <i>Tetrahedron Letters</i> , 2016 , 57, 2025-2028	2	31
538	Electron-donating abilities and luminescence properties of tolane-substituted nido-carboranes. <i>New Journal of Chemistry</i> , 2017 , 41, 10550-10554	3.6	31
537	Synthesis of transparent poly(vinylidene fluoride) (PVdF)/zirconium oxide hybrids without crystallization of PVdF chains. <i>Polymer</i> , 2009 , 50, 3174-3181	3.9	31
536	Linearly Extended EConjugated Dithiafulvene Polymer Formed Soluble Charge-Transfer Complex with 7,7,8,8-Tetracyanoquinodimethane. <i>Polymer Journal</i> , 2000 , 32, 435-439	2.7	31

(2005-2017)

535	Synthesis of POSS Derivatives Having Dual Types of Alkyl Substituents and Their Application as a Molecular Filler for Low-Refractive and Highly Durable Materials. <i>Bulletin of the Chemical Society of Japan</i> , 2017 , 90, 205-209	5.1	30	
534	Heavy metal-free 19F NMR probes for quantitative measurements of glutathione reductase activity using silica nanoparticles as a signal quencher. <i>Bioorganic and Medicinal Chemistry</i> , 2012 , 20, 96-100	3.4	30	
533	Synthesis and Characterization of Gallafluorene-Containing Conjugated Polymers: Control of Emission Colors and Electronic Effects of Gallafluorene Units on EConjugation System. <i>Macromolecules</i> , 2015 , 48, 1343-1351	5.5	30	
532	Hypoxic condition-selective upconversion via triplet-triplet annihilation based on POSS-core dendrimer complexes. <i>Bioorganic and Medicinal Chemistry</i> , 2013 , 21, 2678-81	3.4	30	
531	Reductive Glutathione-Responsive Molecular Release Using Water-Soluble POSS Network Polymers. <i>Bulletin of the Chemical Society of Japan</i> , 2011 , 84, 612-616	5.1	30	
530	Synthesis of Nanocomposites of Metal Nanoparticles Utilizing Miscible Polymers. <i>Polymer Bulletin</i> , 2004 , 52, 171	2.4	30	
529	Reversible carbon dioxide fixation by organocopper complexes. <i>Journal of the Chemical Society Chemical Communications</i> , 1975 , 963		30	
528	Transformation of sulfur to organicIhorganic hybrids employed by networks and their application for the modulation of refractive indices. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 2588-2595	2.5	29	
527	Spontaneous Ring-Collapsed Alternating Copolymerization of a Homocyclic Arsenic Compound and Phenylacetylene. <i>Macromolecules</i> , 2004 , 37, 5952-5958	5.5	29	
526	A Versatile and Efficient Hydrosilylation Route to Functionalized Polyferrocenylsilanes. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 950-954	4.8	29	
525	Novel Conjugated Polymers Containing [2.2]Paracyclophane and Carbazole Units with Efficient Photoluminescence. <i>Polymer Bulletin</i> , 2005 , 53, 73-80	2.4	29	
524	Reversible Formation of Interpenetrating Polymer Network Structure in Organic-Inorganic Polymer Hybrids. <i>Polymer Journal</i> , 1998 , 30, 990-995	2.7	29	
523	Spiral Eu(iii) coordination polymers with circularly polarized luminescence. <i>Chemical Communications</i> , 2018 , 54, 10695-10697	5.8	29	
522	Simple and valid strategy for the enhancement of the solid-emissive property of boron dipyrromethenes. <i>Tetrahedron Letters</i> , 2015 , 56, 6786-6790	2	28	
521	Preparation and fluorescence properties of fluorophore-labeled avidin-biotin system immobilized on Fe3O4 nanoparticles through functional indolequinone linker. <i>Bioorganic and Medicinal Chemistry</i> , 2009 , 17, 3775-81	3.4	28	
520	Practical synthesis of P-stereogenic diphosphacrowns. <i>Organic Letters</i> , 2009 , 11, 2241-4	6.2	28	
519	Effect of Molecular Weights of Poly(acrylic acid) on Crystallization of Calcium Carbonate by the Delayed Addition Method. <i>Polymer Journal</i> , 2008 , 40, 154-162	2.7	28	
518	Synthesis of Amorphous and Nanostructured Cationic Polyacetylene/Silica Hybrids by Using Ionic Interactions. <i>Macromolecules</i> , 2005 , 38, 9110-9116	5.5	28	

517	Ring-Collapsed Radical Alternating Copolymerization of Phenyl-Substituted Cyclooligostibine and Acetylenic Compounds. <i>Macromolecules</i> , 2006 , 39, 8257-8262	5.5	28
516	Synthesis and characterization of Dithia[3.3](2,6)pyridinophane-containing polymers: application to the palladium-catalyzed Heck reaction. <i>Organic Letters</i> , 2006 , 8, 1029-32	6.2	28
515	Tapping mode AFM evidence for an amorphous reticular phase in a condensation-cured hybrid elastomer: alpha,omega-dihydroxypoly(dimethylsiloxane)/poly(diethoxysiloxane)/fumed silica nanoparticles. <i>Journal of the American Chemical Society</i> , 2004 , 126, 12284-5	16.4	28
514	Cutting performance and wear mechanism of alumina-based ceramic tools when machining austempered ductile iron. <i>Wear</i> , 1994 , 174, 147-153	3.5	28
513	A silver(i)-induced higher-ordered structure based on planar chiral tetrasubstituted [2.2]paracyclophane. <i>Chemical Communications</i> , 2017 , 53, 8304-8307	5.8	27
512	Luminescent alternating boron quinolatefluorene copolymers exhibiting high electron mobility. Journal of Materials Chemistry, 2010 , 20, 5196		27
511	Periodic Terpolymerization of Cyclooligoarsine, Cyclooligostibine, and Acetylenic Compound. <i>Macromolecules</i> , 2007 , 40, 1372-1376	5.5	27
510	Synthesis of covalently bonded nanostructure from two porphyrin molecular wires leading to a molecular tube. <i>Tetrahedron Letters</i> , 2006 , 47, 5265-5268	2	27
509	Scintillation materials for neutron imaging detectors. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2004 , 529, 274-27	79 ^{1.2}	27
508	Novel Econjugated cyclophane polymers containing phenylamine moieties with strong blue-light emission. <i>Polymer</i> , 2005 , 46, 5884-5889	3.9	27
507	Novel Etonjugated organoboron polymers: Poly (ethynylene-phenylene-ethynylene-borane)s. <i>Polymer Bulletin</i> , 2000 , 44, 431-436	2.4	27
506	Hydroboration Polymerization of Dicyano Compounds. 4. Synthesis of Stable Poly(cyclodiborazane)s from Dialkylboranes. <i>Macromolecules</i> , 1994 , 27, 6714-6717	5.5	27
505	Molecular Design of Interfacially Active Graft Copolymers by Macromonomer Method. <i>Polymer Journal</i> , 1985 , 17, 133-141	2.7	27
504	Statistical prediction of air pollution levels using non-physical models. <i>Automatica</i> , 1979 , 15, 441-451	5.7	27
503	Highly Emissive Optically Active Conjugated Dimers Consisting of a Planar Chiral [2.2]Paracyclophane Showing Circularly Polarized Luminescence. <i>European Journal of Organic Chemistry</i> , 2015 , 2015, 7756-7762	3.2	26
502	Reduced glutathione-resisting IIF NMR sensors for detecting HNO. <i>Bioorganic and Medicinal Chemistry</i> , 2012 , 20, 4668-74	3.4	26
501	Synthesis of through-space conjugated polymers containing the pseudo-ortho-linked [2.2]paracyclophane moiety. <i>Polymer Bulletin</i> , 2009 , 62, 305-314	2.4	26
500	Durch den Raum[konjugierte Cyclophanpolymere. <i>Angewandte Chemie</i> , 2006 , 118, 6580-6587	3.6	26

(2012-2003)

499	Preparation of Oriented Ultrathin Films via Self-Assembly Based on Charge Transfer Interaction between Econjugated Poly(dithiafulvene) and Acceptor Polymer. <i>Macromolecules</i> , 2003 , 36, 533-535	5.5	26
498	Synthesis of oligomers including eight P-chiral centers and the construction of the 12-phosphacrown-4 skeleton. <i>Tetrahedron Letters</i> , 2005 , 46, 7011-7014	2	26
497	Synthesis of novel poly(pyrazabole)s with electron-withdrawing structure in their main chain. <i>Polymer Bulletin</i> , 2005 , 53, 155-160	2.4	26
496	Synthesis and Properties of EConjugated Poly(dithiafulvene)s by Cycloaddition Polymerization of Heteroaromatic Bisthioketenes. <i>Macromolecules</i> , 2000 , 33, 4733-4737	5.5	26
495	POSS-based molecular fillers for simultaneously enhancing thermal and viscoelasticity of poly(methyl methacrylate) films. <i>Materials Letters</i> , 2017 , 203, 62-67	3.3	25
494	Modulation of the cis- and trans-Conformations in Bis-o-carborane Substituted Benzodithiophenes and Emission Enhancement Effect on Luminescent Efficiency by Solidification. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 1507-1512	3.2	25
493	Ælectron-system-layered Polymers Based on [2.2]Paracyclophane. Chemistry Letters, 2012, 41, 840-846	1.7	25
492	Synthesis and coordination behaviors of P-stereogenic polymers. <i>Chemical Communications</i> , 2010 , 46, 7542-4	5.8	25
491	Synthesis of Conjugated Polymers Containing Phosphole with the 5-Member Fused Carbocycle. <i>Polymer Bulletin</i> , 2007 , 58, 645-652	2.4	25
490	Studies on electrical transport properties of a novel n-type polymer containing tripylborane and fluorene moieties. <i>Synthetic Metals</i> , 2005 , 154, 113-116	3.6	25
489	Hydroboration polymerization. 2. Synthesis of organoboron polymers by the reaction between diyne and thexylborane. <i>Macromolecules</i> , 1992 , 25, 33-36	5.5	25
488	Synthesis of polyurethane graft copolymers by polyaddition reaction of dihydroxyl-terminated macromonomers. <i>Polymer Bulletin</i> , 1982 , 8, 239-244	2.4	25
487	An Organic/Inorganic Hybrid Polymer. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1990 , 27, 1603-1612	2.2	25
486	Remarkably high miscibility of octa-substituted POSS with commodity conjugated polymers and molecular fillers for the improvement of homogeneities of polymer matrices. <i>Polymer Journal</i> , 2016 , 48, 1133-1139	2.7	25
485	Controllable intramolecular interaction of 3D arranged Econjugated luminophores based on a POSS scaffold, leading to highly thermally-stable and emissive materials. <i>RSC Advances</i> , 2016 , 6, 78652-	7 8 7660	24
484	Light-driven artificial enzymes for selective oxidation of guanosine triphosphate using water-soluble POSS network polymers. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 6500-6	3.9	24
483	Synthesis of dual-emissive polymers based on ineffective energy transfer through cardo fluorene-containing conjugated polymers. <i>Polymer</i> , 2015 , 60, 228-233	3.9	24
482	Isolation of Econjugated system through polyfluorene from electronic coupling with side-chain substituents by cardo structures. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 4433-4442	2.5	24

481	Polymer reaction of poly(p-phenylene\(\text{lthynylene}\)) by addition of decaborane: modulation of luminescence and heat resistance. <i>Polymer Journal</i> , 2010 , 42, 363-367	2.7	24
480	Synthesis of novel organoboron polymers by hydroboration polymerization of bisallene compounds. <i>Polymer Bulletin</i> , 1997 , 38, 531-536	2.4	24
479	Assembly system of direct modified superparamagnetic iron oxide nanoparticles for target-specific MRI contrast agents. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2008 , 18, 5463-5	2.9	24
478	Synthesis of Poly(cyclodiborazane)s by Hydroboration Polymerization of Dicyanooligothiophenes and Their Light-Emitting Properties. <i>Macromolecules</i> , 2001 , 34, 7331-7335	5.5	24
477	Formation of ELactones by the Reaction of EAllylnickel Complexes with Carbon Dioxide. <i>Synthetic Communications</i> , 1979 , 9, 427-430	1.7	24
476	Optically Active Cyclic Compounds Based on Planar Chiral [2.2]Paracyclophane with Naphthalene Units. <i>Asian Journal of Organic Chemistry</i> , 2016 , 5, 353-359	3	23
475	Synthesis of conjugated polymers containing gallium atoms and evaluation of conjugation through four-coordinate gallium atoms. <i>Chemical Communications</i> , 2014 , 50, 15740-3	5.8	23
474	Luminescent polymer consisting of 9,12-linked o-carborane. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 1357-62	4.8	23
473	Lewis acid-modified mesoporous alumina: A new catalyst carrier for methyltrioxorhenium in metathesis of olefins bearing functional groups. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 554-56	5 7 .3	23
472	Synthesis and characterization of novel Econjugated polymers with phosphole ring derivatives. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 2867-2875	2.5	23
471	Microwave Assisted Synthesis of Organic-Inorganic Polymer Hybrids. <i>Polymer Bulletin</i> , 2005 , 55, 309-31	52.4	23
470	Synthesis of novel Lonjugated boron polymers containing transition metal in the main chain and their optical properties. <i>Polymer Bulletin</i> , 2001 , 46, 257-262	2.4	23
469	Synthesis of Poly(cyclodiborazane)s by Hydroboration Polymerization Using Mesitylborane. <i>Polymer Journal</i> , 1998 , 30, 833-837	2.7	23
468	Synthesis of Highly Optically Active Polysulfoxides by Asymmetric Oxidation of Polysulfides. <i>Macromolecules</i> , 1999 , 32, 7732-7736	5.5	23
467	Haloboration polymerization. Novel organoboron polymers by polyaddition between boron tribromide and terminal diyne. <i>Macromolecules</i> , 1990 , 23, 687-689	5.5	23
466	Preservation of main-chain conjugation through BODIPY-containing alternating polymers from electronic interactions with side-chain substituents by cardo boron structures. <i>Polymer Chemistry</i> , 2016 , 7, 2799-2807	4.9	23
465	Elastic and mechanofluorochromic hybrid films with POSS-capped polyurethane and polyfluorene. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1174-1180	7.8	22
464	Synthesis of emissive water-soluble network polymers based on polyhedral oligomeric silsesquioxane and their application as optical sensors for discriminating the particle size. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 12539-12545	7.1	22

(1999-2020)

463	Modulation of the solid-state luminescent properties of conjugated polymers by changing the connecting points of flexible boron element blocks. <i>Polymer Journal</i> , 2020 , 52, 555-566	2.7	22	
462	Synthesis and color tuning of boron diiminate conjugated polymers with aggregation-induced scintillation properties. <i>RSC Advances</i> , 2015 , 5, 96653-96659	3.7	22	
461	Synthesis of Etonjugated polymers containing aminoquinoline-borafluorene complexes in the main-chain. <i>Macromolecular Rapid Communications</i> , 2012 , 33, 550-5	4.8	22	
460	Synthesis and Characterization of Stereoisomers of 1,4-Dihydro-1,4-diarsinines. <i>Organometallics</i> , 2009 , 28, 6109-6113	3.8	22	
459	Synthesis of optically active P-chiral and optically inactive oligophosphines. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 1166-73	4.5	22	
458	Synthesis of Photosensitive OrganicIhorganic Polymer Hybrids by Utilizing Caged Photoactivatable Alkoxysilane. <i>Macromolecules</i> , 2004 , 37, 5916-5922	5.5	22	
457	Effect of anionic dendrimers on the crystallization of calcium carbonate in aqueous solution. <i>Comptes Rendus Chimie</i> , 2003 , 6, 1193-1200	2.7	22	
456	Synthesis and Properties of Alternating Acceptor D onor EConjugated Copolymers of Cyclodiborazane with Dithiafulvene. <i>Macromolecules</i> , 2000 , 33, 7467-7470	5.5	22	
455	Synthesis of Bipyridyl-Branched Polyoxazoline and Its Gelation by Means of Metal Coordination. <i>Polymer Journal</i> , 1993 , 25, 599-608	2.7	22	
454	Construction of the Luminescent DonorAcceptor Conjugated Systems Based on Boron-Fused Azomethine Acceptor. <i>Macromolecules</i> , 2019 , 52, 3387-3393	5.5	21	
453	Dual emission via remote control of molecular rotation of o-carborane in the excited state by the distant substituents in tolane-modified dyads. <i>New Journal of Chemistry</i> , 2018 , 42, 4210-4214	3.6	21	
452	Synthesis of enantiomerically pure P-stereogenic diphosphacrowns and their palladium complexes. <i>Journal of Organic Chemistry</i> , 2011 , 76, 1795-803	4.2	21	
451	Synthesis of a star-shaped polymer via coordination of ester-linked pyridyl-terminated poly(oxyethylene) with ru(II). <i>Macromolecular Rapid Communications</i> , 1997 , 18, 1025-1032	4.8	21	
450	Stereospecific construction of a trans-1,4-diphosphacyclohexane skeleton. <i>Organic Letters</i> , 2008 , 10, 1489-92	6.2	21	
449	Multiresponsive Photopatterning OrganicIhorganic Polymer Hybrids Using a Caged Photoluminescence Compound. <i>Macromolecules</i> , 2005 , 38, 4425-4431	5.5	21	
448	First synthesis of the bismole-containing conjugated polymer. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 4857-4863	2.5	21	
447	Synthesis and characterization of liquid-crystalline silsesquioxanes. <i>Polymer Bulletin</i> , 2001 , 46, 15-21	2.4	21	
446	Thermoresponsive OrganicIhorganic Polymer Hybrids from Poly(N-isopropylacrylamide). <i>Polymer Journal</i> , 1999 , 31, 258-262	2.7	21	

445	One-shot block copolymerization. Makromolekulare Chemie Macromolecular Symposia, 1990, 32, 1-10		21
444	Synthesis of fluorine-containing graft copolyamides by using condensation-type macromonomers. Journal of Polymer Science Part A, 1988 , 26, 2991-2996	2.5	21
443	Copper(I) cyanoacetate as a carrier of activated carbon dioxide. <i>Journal of the Chemical Society Chemical Communications</i> , 1976 , 415		21
442	Hash-Mark-Shaped Azaacene Tetramers with Axial Chirality. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7152-7158	16.4	21
441	Time-Dependent Emission Enhancement of the Ethynylpyrene-o-Carborane Dyad and Its Application as a Luminescent Color Sensor for Evaluating Water Contents in Organic Solvents. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 1577-1581	4.5	20
440	Facile design of organic-inorganic hybrid gels for molecular recognition of nucleoside triphosphates. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 2050-5	2.9	20
439	Synthesis of optically active polymers containing chiral phosphorus atoms in the main chain. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 866-872	2.5	20
438	Synthesis of anionic polymerBilica hybrids by controlling pH in an aqueous solution. <i>Journal of Materials Chemistry</i> , 2005 , 15, 315-322		20
437	Synthesis and characterization of stereoregular poly(methyl methacrylate) lilica hybrid utilizing stereocomplex formation. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 785-794	2.5	20
436	Poly(cyclodiborazane)s. <i>Journal of Organometallic Chemistry</i> , 2003 , 680, 27-30	2.3	20
435	Synthesis of EConjugated Poly(cyclodiborazane)s by Organometallic Polycondensation. <i>Macromolecules</i> , 2000 , 33, 8146-8148	5.5	20
434	Synthesis of Non-Ionic Hydrogel from Star-Shaped Polyoxazoline <i>Polymer Journal</i> , 1992 , 24, 1301-1300	6 2.7	20
433	Synthesis of aromatic dicarboxyl-terminated poly(methyl methacrylate) macromonomers. <i>Journal of Polymer Science Part A</i> , 1989 , 27, 2007-2014	2.5	20
432	Stimuli-responsive luminochromic polymers consisting of multi-state emissive fused boron ketoiminate. <i>Polymer Chemistry</i> , 2020 , 11, 1127-1133	4.9	20
431	Near-Infrared Circularly Polarized Luminescence through Intramolecular Excimer Formation of Oligo(p-phenyleneethynylene)-Based Double Helicates. <i>Chemistry - A European Journal</i> , 2019 , 25, 9211-	9286	19
430	Liquid scintillators with near infrared emission based on organoboron conjugated polymers. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 5331-4	2.9	19
429	Luminescent color tuning with polymer films composed of boron diiminate conjugated copolymers by changing the connection points to comonomers. <i>Polymer Chemistry</i> , 2018 , 9, 1942-1946	4.9	19
428	Control of the Emission Behaviors of Trifunctional o-Carborane Dyes. <i>Asian Journal of Organic Chemistry</i> , 2014 , 3, 624-631	3	19

Precise Sulfite Functionalization of Polyolefins via ADMET Polymerization. <i>ACS Macro Letters</i> , 2015 , 4, 624-627	6.6	19	
Red/Near-Infrared Light-Emitting OrganicIhorganic Hybrids Doped with Covalently Bound Boron Dipyrromethene (BODIPY) Dyes via Microwave-Assisted One-Pot Process. <i>Bulletin of the Chemical Society of Japan</i> , 2011 , 84, 471-481	5.1	19	
Quantum yield and morphology control of BODIPY-based supramolecular self-assembly with a chiral polymer inhibitor. <i>Polymer Journal</i> , 2010 , 42, 37-42	2.7	19	
Synthesis and properties of oligophenylene-layered polymers. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1094-100	4.8	19	
Stable crosslinked Econjugated boron containing polymers prepared by hydroboration polymerization or allylboration polymerization. <i>Polymer Bulletin</i> , 2003 , 51, 9-16	2.4	19	
Preparation of CaCO3/polymer composite films via interaction of anionic starburst dendrimer with poly(ethylenimine). <i>Polymer Bulletin</i> , 2000 , 45, 447-450	2.4	19	
Synthesis of Poly(cyclodiborazane)s Bearing a Disilanylene Unit and Their Optical and Electrochemical Properties. <i>Macromolecules</i> , 2001 , 34, 3510-3511	5.5	19	
Boration Copolymerization between Diynes and Diisocyanates. Novel Alternating Copolymerization Strategy. <i>Macromolecules</i> , 1998 , 31, 3155-3157	5.5	19	
Synthesis of IPN Polymer Hybrids by In-Situ Radical Polymerization Method and Their High Resistivity to Solvent Extraction. <i>Bulletin of the Chemical Society of Japan</i> , 1998 , 71, 2749-2756	5.1	19	
Synthesis of Star-Shaped Polymers via Coordination of Bipyridyl-Terminated Polyoxyethylene with Metal Ions. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1995 , 32, 1213-1223	2.2	19	
Hydroboration polymerization of dicyano compounds. <i>Polymer Bulletin</i> , 1993 , 31, 553-558	2.4	19	
Synthesis of an amphigel by the terpolymerization of 2-methyl-2-oxazoline, 2-alkyl-2-oxazoline, and bis-oxazoline. <i>Polymer Bulletin</i> , 1989 , 21, 353-356	2.4	19	
All Donor Electrochromic Polymers Tunable across the Visible Spectrum via Random Copolymerization. <i>Chemistry of Materials</i> , 2019 , 31, 6841-6849	9.6	18	
Synthesis of air- and moisture-stable dibenzogallepins: control of planarity of seven-membered rings in solid states by coordination to gallium atoms. <i>Organic Letters</i> , 2015 , 17, 1593-6	6.2	18	
Enhancement of Luminescence Efficiencies by Thermal Rearrangement from ortho- to meta-Carborane in Bis-Carborane-Substituted Acenes. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 1885-1890	3.2	18	
Tunable Optical Property between Pure Red Luminescence and Dual Emission Depended on the Length of Light-Harvesting Antennae in the Dyads Containing the Cardo Structure of BODIPY and Oligofluorene. <i>Macromolecules</i> , 2016 , 49, 8899-8904	5.5	18	
Control of intramolecular excimer emission in luminophore-integrated ionic POSSs possessing flexible side-chains. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1449-1455	7.8	18	
Tuning of Sensitivity in Thermochromic Luminescence by Regulating Molecular Rotation Based on Triphenylamine-Substituted o-Carboranes. <i>Asian Journal of Organic Chemistry</i> , 2019 , 8, 2228-2232	3	18	
	Red/Near-Infrared Light-Emitting Organicthorganic Hybrids Doped with Covalently Bound Boron Dipyrromethene (BODIPY) Dyes via Microwave-Assisted One-Pot Process. <i>Bulletin of the Chemical Society of Japan</i> , 2011, 84, 471-481 Quantum yield and morphology control of BODIPY-based supramolecular self-assembly with a chiral polymer inhibitor. <i>Polymer Journal</i> , 2010, 42, 37-42 Synthesis and properties of oligophenylene-layered polymers. <i>Macromolecular Rapid Communications</i> , 2009, 30, 1094-100 Stable crosslinked Etonjugated boron containing polymers prepared by hydroboration polymerization or allylboration polymerization. <i>Polymer Bulletin</i> , 2003, 51, 9-16 Preparation of CaCO3/polymer composite films via interaction of anionic starburst dendrimer with poly(ethylenimine). <i>Polymer Bulletin</i> , 2000, 45, 447-450 Synthesis of Poly(cyclodiborazane)s Bearing a Disilanylene Unit and Their Optical and Electrochemical Properties. <i>Macromolecules</i> , 2001, 34, 3510-3511 Boration Copolymerization between Diynes and Diisocyanates. Novel Alternating Copolymerization Strategy. <i>Macromolecules</i> , 1998, 31, 3155-3157 Synthesis of IPN Polymer Hybrids by In-Situ Radical Polymerization Method and Their High Resistivity to Solvent Extraction. <i>Bulletin of the Chemical Society of Japan</i> , 1998, 71, 2749-2756 Synthesis of Star-Shaped Polymers via Coordination of Bipyridyl-Terminated Polyoxyethylene with Metal lons. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1995, 32, 1213-1223 Hydroboration polymerization of dicyano compounds. <i>Polymer Bulletin</i> , 1993, 31, 553-558 Synthesis of an amphigel by the terpolymerization of 2-methyl-2-oxazoline, 2-alkyl-2-oxazoline, and bis-oxazoline. <i>Polymer Bulletin</i> , 1993, 21, 353-356 All Donor Electrochromic Polymers Tunable across the Visible Spectrum via Random Copolymerization. <i>Chemistry of Materials</i> , 2019, 31, 6841-6849 Synthesis of air- and moisture-stable dibenazogallepins: control of planarity of seven-membered rings in solid states by coordination to gallium atoms. <i>Or</i>	4, 624-627 Red/Near-Infrared Light-Emitting Organidhorganic Hybrids Doped with Covalently Bound Boron Dipyrromethene (BODIPY) Dyes via Microwave-Assisted One-Pot Process. Bulletin of the Chemical Society of Japan, 2011, 84, 471-481 Quantum yield and morphology control of BODIPY-based supramolecular self-assembly with a chiral polymer inhibitor. Polymer Journal, 2010, 42, 37-42 Synthesis and properties of oligophenylene-layered polymers. Macromolecular Rapid Communications, 2009, 30, 1094-100 Stable crosslinked Ecnjugated boron containing polymers prepared by hydroboration polymerization or allylboration polymerization. Polymer Bulletin, 2003, 51, 9-16 Preparation of CaCO3/polymer composite films via interaction of anionic starburst dendrimer with poly(ethylenimine). Polymer Bulletin, 2000, 45, 447-450 Synthesis of Poly(cyclodiborazane)s Bearing a Disilanylene Unit and Their Optical and Electrochemical Properties. Macromolecules, 2001, 34, 3510-3511 Boration Copolymerization between Diynes and Diisocyanates. Novel Alternating Copolymerization Strategy. Macromolecules, 1998, 31, 3155-3157 Synthesis of IPN Polymer Hybrids by In-Situ Radical Polymerization Method and Their High Resistivity to Solvent Extraction. Bulletin of the Chemical Society of Japan, 1998, 71, 2749-2756 Synthesis of Star-Shaped Polymers via Coordination of Bipyridyl-Terminated Polyoxyethylene with Metal Lons. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 1213-1223 Hydroboration polymerization of dicyano compounds. Polymer Bulletin, 1993, 31, 553-558 2,4 Synthesis of an amphigel by the terpolymerization of 2-methyl-2-oxazoline, 2-alkyl-2-oxazoline, and bis-oxazoline. Polymer Bulletin, 1989, 21, 353-356 All Donor Electrochromic Polymers Tunable across the Visible Spectrum via Random Copolymerization. Chemistry of Materials, 2019, 31, 6841-6849 Synthesis of air- and moisture-stable dibenzogallepins: control of planarity of seven-membered rings in solid states by coordination to gallium atoms. Organic Lette	Red/Near-Infrared Light-Emitting Organiciflorganic Hybrids Doped with Covalently Bound Boron Dipyrromethene (BODIPY) Dives via Microwave-Assisted One-Pot Process. Bulletin of the Chemical Society of Japan, 2011, 34, 471-481 Quantum yield and morphology control of BODIPY-based supramolecular self-assembly with a chiral polymer inhibitor. Polymer Journal, 2010, 42, 37-42 Synthesis and properties of oligophenylene-layered polymers. Macromolecular Rapid Communications, 2009, 30, 1094-100 Stable crosslinked Ronjugated boron containing polymers prepared by hydroboration polymerization or allylboration polymerization. Polymer Bulletin, 2003, 51, 9-16 2-4 19 Preparation of CaCO3/polymer composite films via interaction of anionic starburst dendrimer with polylecthylenimine). Polymer Bulletin, 2000, 45, 447-450 Synthesis of Poly(cyclodiborazane)s Bearing a Disilanylene Unit and Their Optical and Electrochemical Properties. Macromolecules, 2001, 34, 3510-3511 Boration Copolymerization between Diynes and Diisocyanates. Novel Alternating Copolymerization Strategy. Macromolecules, 1998, 31, 3155-3157 Synthesis of IPN Polymer Hybrids by In-Situ Radical Polymerization Method and Their High Resistivity to Solvent Extraction. Bulletin of the Chemical Society of Japan, 1998, 71, 2749-2756 Synthesis of Star-Shaped Polymers via Coordination of Bipyridyl-Terminated Polyoxyethylene with Metal Ions. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 1213-1223 Hydroboration polymerization of dicyano compounds. Polymer Bulletin, 1993, 31, 553-558 2-4 19 Synthesis of an amphigel by the terpolymerization of 2-methyl-2-oxazoline, 2-alkyl-2-oxazoline, and bis-oxazoline. Polymer Bulletin, 1998, 21, 353-356 All Donor Electrochromic Polymers Tunable across the Visible Spectrum via Random Copolymerization. Chemistry of Materials, 2019, 31, 6841-6849 Synthesis of air- and moisture-stable dibenzogallepins: control of planarity of seven-membered rings in solid states by coordination to gallium atoms. Organic

409	Energy-transfer properties of a [2.2]paracyclophane-based through-space dimer. <i>Chemistry - A European Journal</i> , 2013 , 19, 17715-8	4.8	18
408	Synthesis of Aggregation-Induced Emission-Active Conjugated Polymers Composed of Group 13 Diiminate Complexes with Tunable Energy Levels via Alteration of Central Element. <i>Polymers</i> , 2017 , 9,	4.5	18
407	Synthesis of benzo[h]quinoline-based neutral pentacoordinate organosilicon complexes. <i>Chemical Communications</i> , 2012 , 48, 8541-3	5.8	18
406	Synthesis, Structure, and Properties of Aromatic Ring-Layered Polymers Containing Ferrocene as a Terminal Unit. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2009 , 19, 104-112	3.2	18
405	The Aza-Wittig Polymerization: An Efficient Method for the Construction of Carbon Ditrogen Double Bonds-Containing Polymers. <i>Macromolecules</i> , 2008 , 41, 5671-5673	5.5	18
404	Synthesis of optically active oligomers consisting of chiral phosphorus atoms: capture of an intermediate between a polymer and a small molecule. <i>Tetrahedron Letters</i> , 2007 , 48, 1451-1455	2	18
403	Synthesis of the Optically Active Polymer Consisting of Chiral Phosphorus Atoms and p-Phenylene-ethynylene Units. <i>Polymer Bulletin</i> , 2007 , 58, 665-671	2.4	18
402	Self-organized Nanocomposites of Functionalized Gold Nanoparticles with Octa(3-aminopropyl)octasilsesquioxane. <i>Chemistry Letters</i> , 2004 , 33, 216-217	1.7	18
401	Organic-inorganic polymer hybrids using octasilsesquioxanes with hydroxyl groups. <i>Polymer Bulletin</i> , 2001 , 46, 351-356	2.4	18
400	Synthesis of polysiloxane graft copolymers by hydrosilylation reactions. <i>Die Makromolekulare Chemie</i> , 1985 , 186, 1203-1211		18
399		16.4	18
	Chemie, 1985, 186, 1203-1211 Copper complex acting as a reversible carbon dioxide carrier. Journal of the American Chemical	16.4 4.5	
399	Chemie, 1985, 186, 1203-1211 Copper complex acting as a reversible carbon dioxide carrier. Journal of the American Chemical Society, 1978, 100, 630-632 Design of Thermochromic Luminescent Dyes Based on the Bis(ortho-carborane)-Substituted	·	18
399 398	Chemie, 1985, 186, 1203-1211 Copper complex acting as a reversible carbon dioxide carrier. Journal of the American Chemical Society, 1978, 100, 630-632 Design of Thermochromic Luminescent Dyes Based on the Bis(ortho-carborane)-Substituted Benzobithiophene Structure. Chemistry - an Asian Journal, 2019, 14, 789-795 Development of the optical sensor for discriminating isomers of fatty acids based on emissive network polymers composed of polyhedral oligomeric silsesquioxane. Bioorganic and Medicinal	4.5	18
399 398 397	Copper complex acting as a reversible carbon dioxide carrier. <i>Journal of the American Chemical Society</i> , 1978 , 100, 630-632 Design of Thermochromic Luminescent Dyes Based on the Bis(ortho-carborane)-Substituted Benzobithiophene Structure. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 789-795 Development of the optical sensor for discriminating isomers of fatty acids based on emissive network polymers composed of polyhedral oligomeric silsesquioxane. <i>Bioorganic and Medicinal Chemistry</i> , 2017 , 25, 3431-3436 Synthesis, characterization, and optoelectronic study of three biaryl-fused closo - o -carboranes and	4·5 3·4	18 18 17
399398397396	Copper complex acting as a reversible carbon dioxide carrier. Journal of the American Chemical Society, 1978, 100, 630-632 Design of Thermochromic Luminescent Dyes Based on the Bis(ortho-carborane)-Substituted Benzobithiophene Structure. Chemistry - an Asian Journal, 2019, 14, 789-795 Development of the optical sensor for discriminating isomers of fatty acids based on emissive network polymers composed of polyhedral oligomeric silsesquioxane. Bioorganic and Medicinal Chemistry, 2017, 25, 3431-3436 Synthesis, characterization, and optoelectronic study of three biaryl-fused closo - o -carboranes and their nido -[C 2 B 9] [species. Journal of Organometallic Chemistry, 2015, 798, 165-170 Synthesis of optically active through-space conjugated polymers consisting of planar chiral	4·5 3·4 2·3	18 18 17
399398397396395	Chemie, 1985, 186, 1203-1211 Copper complex acting as a reversible carbon dioxide carrier. Journal of the American Chemical Society, 1978, 100, 630-632 Design of Thermochromic Luminescent Dyes Based on the Bis(ortho-carborane)-Substituted Benzobithiophene Structure. Chemistry - an Asian Journal, 2019, 14, 789-795 Development of the optical sensor for discriminating isomers of fatty acids based on emissive network polymers composed of polyhedral oligomeric silsesquioxane. Bioorganic and Medicinal Chemistry, 2017, 25, 3431-3436 Synthesis, characterization, and optoelectronic study of three biaryl-fused closo - o -carboranes and their nido -[C 2 B 9] Especies. Journal of Organometallic Chemistry, 2015, 798, 165-170 Synthesis of optically active through-space conjugated polymers consisting of planar chiral [2.2] paracyclophane and quaterthiophene. Polymer Journal, 2015, 47, 278-281 Energy transfer through heterogeneous dyes-substituted fluorene-containing alternating copolymers and their dual-emission properties in the films. Journal of Polymer Science Part A, 2015,	4·5 3·4 2·3 2·7	18 18 17 17

(2008-2018)

391	Comparison of luminescent properties of helicene-like bibenzothiophenes with o-carborane and 5,6-dicarba-nido-decaborane. <i>Science China Chemistry</i> , 2018 , 61, 940-946	7.9	17	
390	Enhancement of dye dispersibility in silica hybrids through local heating induced by the Imidazolium group under microwave irradiation. <i>Polymer Journal</i> , 2014 , 46, 195-199	2.7	17	
389	Photo-triggered molecular release based on auto-degradable polymer-containing organic-inorganic hybrids. <i>Bioorganic and Medicinal Chemistry</i> , 2014 , 22, 3435-40	3.4	17	
388	Synthesis of Photoresponsive OrganicIhorganic Polymer Hybrids from Azobenzene-Modified Poly(2-methyl-2-oxazoline). <i>Macromolecules</i> , 1998 , 31, 532-534	5.5	17	
387	Organic Inorganic Nano-Hybrid Materials [Translated] KONA Powder and Particle Journal, 2007 , 25, 255-260	3.4	17	
386	Homogeneous anionic PPE hybrids with silica gel. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 3749-375	52.5	17	
385	Effect of Anionic 4.5-Generation Polyamidoamine Dendrimer on the Formation of Calcium Carbonate Polymorphs. <i>Bulletin of the Chemical Society of Japan</i> , 2002 , 75, 2541-2546	5.1	17	
384	Alternating Boration Copolymerization between Diynes and Diisocyanates. Organoboron Polymers Bearing Monomeric Iminoborane in Their Main Chain. <i>Macromolecules</i> , 2000 , 33, 2801-2806	5.5	17	
383	Alkoxyboration Polymerization. Synthesis of Novel Poly(boronic carbamate)s. <i>Macromolecules</i> , 1998 , 31, 3802-3806	5.5	17	
382	Synthesis of crown ether-terminated poly(methyl methacrylate) by radical chain transfer polymerization. <i>Journal of Polymer Science Part A</i> , 1990 , 28, 59-65	2.5	17	
381	Improvement of Solid-State Excimer Emission of the Aryl E thynyl-o-Carborane Skeleton by Acridine Introduction. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 2984-2988	3.2	16	
380	Synthesis of enantiopure planar chiral bis-(para)-pseudo-meta-type [2.2]paracyclophanes. <i>Chirality</i> , 2018 , 30, 1109-1114	2.1	16	
379	Synthesis of dibenzo[b,f]silepins with a benzoquinolyl ligand. Organic Letters, 2013, 15, 2366-9	6.2	16	
378	Microwave-enhanced hybridizations of biopolymers with silica: effective method for rapid preparation and homogeneous dispersion. <i>Polymer Bulletin</i> , 2011 , 66, 1039-1050	2.4	16	
377	Synthesis and properties of carbazole-layered polymers. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 4279-4288	2.5	16	
376	Polymethylenes Containing [2.2]Paracyclophane in the Side Chain. <i>Macromolecules</i> , 2009 , 42, 1439-144	25.5	16	
375	Stoichiometric Complexation of Palladium(II) with 1,4-Dihydro-1,4-diarsinine as a Rigid Symmetrical Bidentate Ligand. <i>Organometallics</i> , 2008 , 27, 1034-1036	3.8	16	
374	Preparation and Characterization of Poly(vinylpyrrolidone)/Zirconium Oxide Hybrids by Using Inorganic Nanocrystals. <i>Polymer Journal</i> , 2008 , 40, 1157-1163	2.7	16	

373	Synthesis of OrganicIhorganic Polymer Hybrids Utilizing Amphiphilic Solvent as a Compatibilizer. <i>Bulletin of the Chemical Society of Japan</i> , 2003 , 76, 1865-1871	5.1	16
372	Photochromic organic-inorganic polymer hybrids from spiropyran-modified poly(N,N-dimethylacrylamide). <i>Polymer Bulletin</i> , 2000 , 44, 9-15	2.4	16
371	A novel inorganicBrganic hybrid membrane for oxygen/nitrogen separation containing a cobalt(II) Schiff base complex as oxygen carrier using poly(N-vinylpyrrolidone) as mediator. <i>Chemical Communications</i> , 2000 , 2477-2478	5.8	16
370	Synthesis of poly(organoboron halide)s by hydroboration polymerization between diene and monobromoborane. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 227		16
369	Development of highly-sensitive detection system in F NMR for bioactive compounds based on the assembly of paramagnetic complexes with fluorinated cubic silsesquioxanes. <i>Bioorganic and Medicinal Chemistry</i> , 2017 , 25, 1389-1393	3.4	15
368	Synthesis of furan-substituted aza-BODIPYs having near-infrared emission. <i>Tetrahedron Letters</i> , 2017 , 58, 2989-2992	2	15
367	Recent Progress in the Development of Solid-State Luminescent o-Carboranes with Stimuli Responsivity. <i>Angewandte Chemie</i> , 2020 , 132, 9925-9939	3.6	15
366	A Highly Efficient Near-Infrared-Emissive Copolymer with a N=N Double-Bond EConjugated System Based on a Fused Azobenzene B oron Complex. <i>Angewandte Chemie</i> , 2018 , 130, 6656-6661	3.6	15
365	Synthesis and tuning of optical properties of conjugated polymers involving benzo[h]quinoline-based neutral pentacoordinate organosilicon complexes in the main chain. <i>Polymer Chemistry</i> , 2013 , 4, 5237	4.9	15
364	Biodegradable Main-Chain Phosphate-Caged Fluorescein Polymers for the Evaluation of Enzymatic Activity. <i>Macromolecules</i> , 2010 , 43, 6180-6184	5.5	15
363	Synthesis and properties of through-space conjugated polymers based on cyano-substituted poly(p-arylenevinylene)s. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5979-5988	2.5	15
362	Synthesis of optically active polymer with p-stereogenic phosphine units. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 1719-24	4.8	15
361	Aza-Wittig Polymerization: A Simple Method for the Synthesis of Regioregular Poly(azomethine)s. <i>Macromolecules</i> , 2008 , 41, 9677-9682	5.5	15
360	pH Responsive Aggregation of Imidazolium Cations-Modified Gold Nanoparticles with Poly(acrylic acid) in Aqueous Solution. <i>Polymer Journal</i> , 2007 , 39, 1122-1127	2.7	15
359	Synthesis and Characterization of Econjugated Polymers with a 2,5-Substituted Phosphole Skeleton. <i>Polymer Bulletin</i> , 2007 , 58, 777-784	2.4	15
358	Synthesis of colloidal polyoxazoline/silica hybrids prepared in an aqueous solution. <i>Polymer</i> , 2006 , 47, 4036-4041	3.9	15
357	Electrical conductivity of Econjugated organoboron polymers upon n-type doping. <i>Synthetic Metals</i> , 2003 , 135-136, 393-394	3.6	15
356	Synthesis of Poly(vinyl chloride) and Silica Gel Polymer Hybrids via CH/IInteraction. <i>Polymer Journal</i> , 2004 , 36, 871-877	2.7	15

(1993-2004)

355	Novel Synthesis of Submicrometer Silica Spheres in Non-alcoholic Solvent by Microwave-assisted Sol © el Method. <i>Chemistry Letters</i> , 2004 , 33, 1504-1505	1.7	15	
354	A new type of block copolymerization with one-shot feeding of two monomers. <i>Macromolecular Symposia</i> , 2002 , 183, 53-64	0.8	15	
353	Hydroboration copolymerization. <i>Polymer Bulletin</i> , 1992 , 27, 375-382	2.4	15	
352	Design for multi-step mechanochromic luminescence property by enhancement of environmental sensitivity in a solid-state emissive boron complex. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1781-1788	7.8	15	
351	Electronic chirality inversion of lanthanide complex induced by achiral molecules. <i>Scientific Reports</i> , 2018 , 8, 16395	4.9	15	
350	Regioregular and Regiosymmetric Polythiophenes59-90		15	
349	Synthesis of fully-fused bisboron azomethine complexes and their conjugated polymers with solid-state near-infrared emission. <i>Chemical Communications</i> , 2020 , 56, 6575-6578	5.8	14	
348	Synthesis, properties and structure of borafluorene-based conjugated polymers with kinetically and thermodynamically stabilized tetracoordinated boron atoms. <i>Polymer Journal</i> , 2018 , 50, 197-202	2.7	14	
347	Synthesis of enantiopure P-stereogenic diphosphacrowns using P-stereogenic secondary phosphines. <i>Journal of Organic Chemistry</i> , 2013 , 78, 2769-74	4.2	14	
346	Conjugated microporous polymers consisting of tetrasubstituted [2.2]Paracyclophane junctions. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 2311-2316	2.5	14	
345	P-Stereogenic Optically Active Polymer and the Complexation Behavior. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2603-2611	2.6	14	
344	Conductivity regulation of the mixed-valence tetrathiafulvalene nanowire/poly(methyl methacrylate) composites using heterogeneous tetrathiafulvalene derivatives. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9603		14	
343	Synthesis of through-space conjugated polymers containing [2.2] paracyclophane and thieno[3,4-b] pyrazine in the main chain. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 7003-7011	2.5	14	
342	A hybrid-type, chiral Etonjugated polymer wrapped with polyhedral oligomeric silsesquioxanes. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 6035-6040	2.5	14	
341	Solvatochromic Characterization of OrganicIhorganic Polymer Hybrids with PyridiniumN-Phenolate Betaine Dyes. <i>Macromolecules</i> , 2000 , 33, 3059-3064	5.5	14	
340	Hydroboration Polymerization of Dicyanoanthracene Using Mesitylborane. <i>Macromolecules</i> , 1998 , 31, 8047-8050	5.5	14	
339	Allylboration polymerization. 1. Synthesis of boron-containing polymers by the reaction between triallylborane and dicyano compounds. <i>Macromolecules</i> , 1992 , 25, 3005-3006	5.5	14	
338	Hydroboration polymerization of dicyano compounds. <i>Polymer Bulletin</i> , 1993 , 31, 547-552	2.4	14	

337	High HOMO levels and narrow energy band gaps of dithienogalloles. <i>RSC Advances</i> , 2015 , 5, 55406-554	19.7	13
336	Design of Conjugated Molecules Presenting Short-Wavelength Luminescence by Utilizing Heavier Atoms of the Same Element Group. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 1342-1347	4.5	13
335	Characterization and Photophysical Properties of a Luminescent Aluminum Hydride Complex Supported by a Diketiminate Ligand. <i>Inorganics</i> , 2019 , 7, 100	2.9	13
334	Chirality induction in binuclear phthalocyanine tweezers. <i>Tetrahedron Letters</i> , 2014 , 55, 271-274	2	13
333	Preparation of environmentally resistant conductive silica-based polymer hybrids containing tetrathiafulvalenelletracyanoquinodimethane charge-transfer complexes. <i>Polymer Journal</i> , 2014 , 46, 800-805	2.7	13
332	Synthesis of dual-emissive organometallic complexes containing heterogeneous metal elements. <i>Tetrahedron Letters</i> , 2014 , 55, 6477-6481	2	13
331	Synthesis of organicIhorganic polymer hybrids from poly(vinyl chloride) and polyhedral oligomeric silsesquioxane via CH/Interaction. <i>Progress in Organic Coatings</i> , 2009 , 64, 124-127	4.8	13
330	Microwave-Assisted Synthesis of Poly(2-hydroxyethyl methacrylate) (HEMA)/Silica Hybrid Using in situ Polymerization Method. <i>Polymer Journal</i> , 2009 , 41, 1080-1084	2.7	13
329	Polyamide-silica gel hybrids containing metal salts: Preparation via the sol-gel reaction. <i>Polymer Bulletin</i> , 1997 , 38, 501-508	2.4	13
328	Synthesis of poly(vinylene arsine)s through the ring-collapsed radical alternating copolymerization of an organoarsenic homocycle with aliphatic acetylenes and their properties. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 3604-3611	2.5	13
327	Organic scintillators containing 10B for neutron detectors. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2004 , 529, 329-331	1.2	13
326	Synthesis and characterization of organometallic conjugated polymers containing tricarbonyl(arene)chromium unit and platinum. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 2684-26	58 9 3	13
325	Effect of Anionic Polyamidoamine Dendrimers on the Crystallization of Calcium Carbonate by Delayed Addition Method. <i>Bulletin of the Chemical Society of Japan</i> , 2003 , 76, 1687-1691	5.1	13
324	Preparation of Gold Nanoparticles Protected by a Cubic Silsesquioxane and Their Monolayer Formation on a Glass Substrate. <i>Bulletin of the Chemical Society of Japan</i> , 2004 , 77, 1767-1771	5.1	13
323	Synthesis of Econjugated organoboron polymers by haloboration-phenylboration polymerization of aromatic diynes. <i>Polymer Bulletin</i> , 1999 , 42, 505-510	2.4	13
322	Reactions of organoboron polymers prepared by hydroboration polymerization. 1. Synthesis of poly(alcohol) by reaction with carbon monoxide. <i>Macromolecules</i> , 1991 , 24, 3010-3012	5.5	13
321	The Design Strategy for an Aggregation- and Crystallization-Induced Emission-Active Molecule Based on the Introduction of Skeletal Distortion by Boron Complexation with a Tridentate Ligand. <i>Crystals</i> , 2020 , 10, 615	2.3	13
320	Randomly Distributed Conjugated Polymer Repeat Units for High-Efficiency Photovoltaic Materials with Enhanced Solubility and Processability. <i>ACS Applied Materials & Distributed Solubility</i> , 10, 44583-44	58 §	13

(2000-2015)

319	Fluorescence and phosphorescence study of germanium acetylene polymers and germa[N]pericyclynes. <i>Polymer Chemistry</i> , 2015 , 6, 7495-7499	4.9	12	
318	Regulation of responsiveness of phosphorescence toward dissolved oxygen concentration by modulating polymer contents in organic-inorganic hybrid materials. <i>Bioorganic and Medicinal Chemistry</i> , 2014 , 22, 3141-5	3.4	12	
317	Through-space conjugated molecular wire comprising three Electron systems. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 2891-5	4.5	12	
316	Preparation of clusters having various interparticle distances based on imidazolium-modified gold nanoparticles via anion exchange. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 390, 126-133	5.1	12	
315	Facile preparation of concentration-gradient materials with radical spin of the mixed-valence tetrathiafulvalene in conventional polymer films. <i>Langmuir</i> , 2010 , 26, 10254-8	4	12	
314	1,4-Dihydro-1,4-diarsinine-Bridged Dinucleartrans-Dihaloplatinum(II) Complexes: Synthesis and Controlled PtPt Interaction by Halogen Substitution Induced Conformational Change§. Organometallics, 2010, 29, 4992-5003	3.8	12	
313	Luminescent chiral organoboron 8-aminoquinolate-coordination polymers. <i>Applied Organometallic Chemistry</i> , 2009 , 24, 563-568	3.1	12	
312	Synthesis of Cyano-substituted Through-space Poly(p-arylenevinylene). <i>Chemistry Letters</i> , 2009 , 38, 734	1-7. 3 /5	12	
311	Novel aprotic polar polymers. <i>Polymer Bulletin</i> , 1997 , 38, 379-386	2.4	12	
310	Appearing, Disappearing, and Reappearing Fumed Silica Nanoparticles: Tapping-Mode AFM Evidence in a Condensation Cured Polydimethylsiloxane Hybrid Elastomer. <i>Chemistry of Materials</i> , 2007 , 19, 2141-2143	9.6	12	
309	Synthesis of transition-metal-containing poly(pyrazabole)s. Pure and Applied Chemistry, 2006, 78, 1407-	1 <u>4.1</u> 1	12	
308	Microporous nanocomposites of Pd and Au nanoparticles via hierarchical self-assembly. <i>Langmuir</i> , 2005 , 21, 12395-8	4	12	
307	Functional Macromolecules with Electron-Donating Dithiafulvene Unit. <i>Advances in Polymer Science</i> , 2004 , 81-106	1.3	12	
306	Synthesis of novel poly(cyclodiborazane)s containing transition metal complexes in the main chain and their properties. <i>Polymer Bulletin</i> , 2002 , 48, 119-125	2.4	12	
305	Synthesis and Properties of Novel Poly(p-phenylenevinylene)s Containing a Tricarbonyl(arene)chromium Unit in the Main Chain. <i>Polymer Bulletin</i> , 2003 , 50, 39-46	2.4	12	
304	Controlled polymer hybrids with ladderlike polyphenylsilsesquioxane as a template via the solgel reaction of phenyltrimethoxysilane. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 473-478	2.5	12	
303	Alternating Etonjugated copolymer of dithiafulvene with 2,2?-bipyridyl units. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 4083-4090	2.5	12	
302	Stable organoboron polymers prepared by hydroboration polymerization of diynes with mesitylborane. <i>Polymer</i> , 2000 , 41, 5047-5051	3.9	12	

301	Formation of IPN organic-inorganic polymer hybrids utilizing the photodimerization of thymine. <i>Polymer Bulletin</i> , 2000 , 45, 9-16	2.4	12
300	Electron-accepting system of Si-Si bond in linear framework by combination with strong donor. Journal of the American Chemical Society, 2001 , 123, 6209-10	16.4	12
299	Synthesis of chitosan/silica gel polymer hybrids. <i>Composite Interfaces</i> , 1998 , 6, 259-272	2.3	12
298	Reactions of organoboron polymers prepared by hydroboration polymerization. <i>Polymer Bulletin</i> , 1991 , 26, 165-168	2.4	12
297	Ring-opening isomerization polymerization of cyclic iminocarbonates. <i>Macromolecules</i> , 1992 , 25, 5878-5	5885	12
296	Synthesis of polysiloxane-polyoxazoline graft copolymer by hydrosilylation reaction. <i>Polymer Bulletin</i> , 1988 , 19, 435-440	2.4	12
295	Synthesis of Aromatic Polyamide P oly(methyl methacrylate) Graft Copolymers by the Macromonomer Method. <i>Polymer Journal</i> , 1988 , 20, 407-411	2.7	12
294	Unique Substitution Effect at 5,5'-Positions of Fused Azobenzene-Boron Complexes with a N=N EConjugated System. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 1837-1843	4.5	12
293	EConjugated Copolymers Composed of Boron Formazanate and Their Application for a Wavelength Converter to Near-Infrared Light. <i>Macromolecules</i> , 2021 , 54, 1934-1942	5.5	12
292	Synthesis of a near-infrared light-absorbing polymer based on thiophene-substituted Aza-BODIPY. <i>Polymer Journal</i> , 2018 , 50, 271-275	2.7	11
291	Heat-initiated detection for reduced glutathione with IIF NMR probes based on modified gold nanoparticles. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2013 , 23, 281-6	2.9	11
290	Design of functionalized nanoparticles for the applications in nanobiotechnology. <i>Advanced Powder Technology</i> , 2014 , 25, 101-113	4.6	11
289	Naphthalene-based oligothiophene-stacked polymers. <i>Polymer Journal</i> , 2010 , 42, 928-934	2.7	11
288	Highly stabilized luminescent polymer nanocomposites: fluorescence emission from metal quinolate complexes with inorganic nanocrystals. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10688		11
287	Arsonic acid-presenting superparamagnetic iron oxide for pH-responsive aggregation under slightly acidic conditions. <i>Bioorganic and Medicinal Chemistry</i> , 2011 , 19, 2282-6	3.4	11
286	Catalyst-Transfer Condensation Polymerization for Precision Synthesis of EConjugated Polymers 2010 , 35-58		11
285	Synthesis of novel organoboron polymers by haloboration polymerization of bisallene compounds and their reactions. <i>Polymer Bulletin</i> , 1997 , 39, 295-302	2.4	11
284	Synthesis of a star-shaped polymer having tris (时iketonato)chromium(III) at the center core. <i>Polymer Bulletin</i> , 1998 , 41, 263-266	2.4	11

(2009-2007)

283	A combined small-angle scattering study of a chemical reaction at specific sites and reaction-induced self-assembly as a problem in open non-equilibrium phenomena. <i>Journal of Applied Crystallography</i> , 2007 , 40, s73-s77	3.8	11
282	Synthesis and Photoluminescence Properties of Pyrene-Incorporated Organic-Inorganic Polymer Hybrids. <i>Polymer Journal</i> , 2008 , 40, 402-408	2.7	11
281	Synthesis and properties of conjugated copolymers having a tricarbonyl(arene)chromium and thiophene units in the main chain. <i>Polymer Bulletin</i> , 2002 , 48, 243-249	2.4	11
280	Synthesis of pH Sensitive Organic-Inorganic Polymer Hybrids. <i>Polymer Bulletin</i> , 2005 , 53, 89-95	2.4	11
279	Synthesis of #Bifunctional Fluorine-Containing Polysiloxanes by Hydrosilation Reaction. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1995 , 32, 29-40	2.2	11
278	Functional polymers based on high hydrophilicity of poly(2-methyl-2-oxazoline). <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1990 , 33, 31-43		11
277	Color tuning of alternating conjugated polymers composed of pentaazaphenalene by modulating their unique electronic structures involving isolated-LUMOs. <i>Polymer Chemistry</i> , 2016 , 7, 3674-3680	4.9	11
276	Development of emissive aminopentaazaphenalene derivatives employing a design strategy for obtaining luminescent conjugated molecules by modulating the symmetry of molecular orbitals with substituent effects. <i>Chemical Communications</i> , 2017 , 53, 5036-5039	5.8	10
275	Preparation of bright-emissive hybrid materials based on light-harvesting POSS having radially integrated luminophores and commercial Econjugated polymers. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 314-320	7.8	10
274	Independently Tuned Frontier Orbital Energy Levels of 1,3,4,6,9b-Pentaazaphenalene Derivatives by the Conjugation Effect. <i>Journal of Organic Chemistry</i> , 2019 , 84, 2768-2778	4.2	10
273	Enhancing Light-Absorption and Luminescent Properties of Non-Emissive 1,3,4,6,9b-Pentaazaphenalene through Perturbation of Forbidden Electronic Transition by Boron Complexation. <i>Asian Journal of Organic Chemistry</i> , 2020 , 9, 259-266	3	10
272	Adamantane ionic liquids. <i>RSC Advances</i> , 2014 , 4, 28107	3.7	10
271	Rapid heat generation under microwave irradiation by imidazolium-presenting silica nanoparticles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 428, 65-69	5.1	10
270	Synthesis of highly transparent conductive films with strong absorption in near-infrared region based on tetrathiafulvalene-tethered pendant-type polymers. <i>Synthetic Metals</i> , 2013 , 163, 13-18	3.6	10
269	Synthesis of oligothiophene-layered polymers. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 2107-1	1 4.8	10
268	Transparent conductive films based on polymer composites containing the mixed-valence tetrathiafulvalene nanofibers. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 6441-6450	2.5	10
267	Synthesis and luminescent properties of pyrenylvinylene-substituted tripylborane. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 1723-1726	2.3	10
266	Aza-Wittig Polymerization: Kinetic Study and Efficient End Functionalization of Poly(azomethine)s. <i>Macromolecules</i> , 2009 , 42, 3463-3468	5.5	10

265	Simple and Rapid Eco-friendly Synthesis of Cubic Octamethylsilsesquioxane Using Microwave Irradiation. <i>Chemistry Letters</i> , 2010 , 39, 354-355	1.7	10
264	Synthesis of highly luminescent organoboron polymers connected by bifunctional 8-aminoquinolate linkers. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 3693-3701	2.5	10
263	Persistent and emission color tunable poly(phenylene-ethynylene)s covered with polyhedral oligomeric silsesquioxanes. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 8112-8116	2.5	10
262	Synthesis and Properties of Cross-Linked Poly(vinylene-arsine). <i>Polymer Bulletin</i> , 2004 , 52, 191-199	2.4	10
261	Synthesis of OrganicIhorganic Polymer Hybrids from Ammoniumpropyl-Functionalized Polyhedral Oligomeric Silsesquioxane. <i>Bulletin of the Chemical Society of Japan</i> , 2004 , 77, 2115-2119	5.1	10
260	Self-organized Wire-like Aggregates of Palladium Nanoparticles with Poly(amidoamine)dendrimer. <i>Chemistry Letters</i> , 2004 , 33, 1236-1237	1.7	10
259	Synthesis of soluble electron-donating polymers containing vinylogous TTF by oxidative dimerization of 1,4-bisdithiafulvenyl-2,5-dialkoxybenzene. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 4600-4608	2.5	10
258	EConjugated Poly(dithiafulvene)s and Poly(diselenafulvene)s: Effects of Side Alkyl Chains on Optical, Electrochemical, and Conducting Properties. <i>Macromolecules</i> , 2002 , 35, 3539-3543	5.5	10
257	Synthesis of a EConjugated Poly(thioketene dimer) and Its Electron-Donating Property. <i>Macromolecules</i> , 2001 , 34, 346-348	5.5	10
256	The machinability of sintered carbons based on the correlation between tool wear rate and physical and mechanical properties. <i>Wear</i> , 1996 , 195, 178-185	3.5	10
255	Novel organoboron polymers hydroboration polymerization and haloboration polymerization. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1993 , 70-71, 47-56		10
254	Synthesis of Poly(cyclodiborazane)s by the Reaction of Bis(silylimine)s with Chlorodialkylboranes or with Methyl Dialkylborinates. <i>Polymer Journal</i> , 1994 , 26, 85-92	2.7	10
253	Reactions of organoboron polymers prepared by hydroboration polymerization. <i>Polymer Bulletin</i> , 1992 , 29, 617-624	2.4	10
252	Boronate Oligomers via Dehydrogenation of Diols with Thexylborane. <i>Polymer Journal</i> , 1991 , 23, 743-7	′4 <u>6</u> .7	10
251	Synthesis and Properties of a Through-space-conjugated Dimer. <i>Chemistry Letters</i> , 2014 , 43, 426-428	1.7	9
250	Structural diversity in the coordination of 1,4-dihydro-1,4-diarsinine as a cyclic ditopic organoarsenic ligand to metal ions. <i>Heteroatom Chemistry</i> , 2012 , 23, 16-26	1.2	9
249	[2.2]paracyclophane-based through-space conjugated polymers with fluorescence quenchers. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 334-339	2.5	9
248	Synthesis and Characterization of Heterofluorenes with Five-coordinated Group 13 Elements. <i>Chemistry Letters</i> , 2015 , 44, 1658-1660	1.7	9

247	Construction of multi-N-heterocycle-containing organic solvent-soluble polymers with 1,3,4,6,9b-pentaazaphenalene. <i>Polymer Journal</i> , 2014 , 46, 688-693	2.7	9	
246	Tumor cell-specific prodrugs using arsonic acid-presenting iron oxide nanoparticles with high sensitivity. <i>Bioorganic and Medicinal Chemistry</i> , 2012 , 20, 4675-9	3.4	9	
245	Photoinduced radical generation and self-assembly of tetrathiafulvalene into the mixed-valence state in the poly(vinyl chloride) film under UV irradiation. <i>Langmuir</i> , 2010 , 26, 1152-6	4	9	
244	Through-space conjugated polymer containing [2.2]paracyclophane and dithiafulvene units in the main chain. <i>Polymer Bulletin</i> , 2009 , 62, 737-747	2.4	9	
243	A Facile Synthesis of Chiral Luminescent Organoboron Polymers by Hydroboration Polymerization Utilizing Chiral Borane. <i>Macromolecules</i> , 2009 , 42, 1560-1564	5.5	9	
242	Synthesis and low-temperature dehydrating imidation polymerization of 1,4-dihydro-1,4-diarsininetetracarboxylic acid dianhydride. <i>Polymer Journal</i> , 2011 , 43, 358-363	2.7	9	
241	Aromatic-ring-layered polymers composed of fluorene and xanthene. <i>Polymer Journal</i> , 2011 , 43, 733-73	37 _{2.7}	9	
240	Nanofiber formation via the self-assembly of a chiral regioregular poly(azomethine). <i>Chemical Communications</i> , 2009 , 2183-5	5.8	9	
239	Synthesis of Optically Active Dendrimers Having Chiral Bisphosphine as a Core. <i>Polymer Bulletin</i> , 2007 , 59, 339-350	2.4	9	
238	Radical copolymerization of cyclic diarsine with vinyl monomers. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 3023-3028	2.5	9	
237	Radical Terpolymerization of Organoarsenic Homocycle, Phenylacetylene, and Vinyl or Butadienyl Monomers. <i>Macromolecules</i> , 2004 , 37, 3623-3629	5.5	9	
236	Controlled polymerization of activated glycine esters by copper(II) chelate. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 1504-1510	2.5	9	
235	Synthesis of Novel IIConjugated Polymers by Alternating Boration Copolymerization between 1,2-Diethynyl-1,1,2,2-tetramethyldisilane and Aromatic Diynes. <i>Polymer Journal</i> , 2001 , 33, 383-386	2.7	9	
234	Versatile Reactions of Organoboron Polymers Prepared by Hydroboration Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1994 , 31, 1647-1655	2.2	9	
233	Catalytic activity of Cu(II)poly(vinyl alcohol) complex for decomposition of hydrogen peroxide. Journal of Polymer Science: Polymer Chemistry Edition, 1978 , 16, 447-455		9	
232	Facile strategy for obtaining luminescent polymorphs based on the chirality of a boron-fused azomethine complex. <i>Chemical Communications</i> , 2020 , 56, 15305-15308	5.8	9	
231	Molecular design and application of luminescent materials composed of group 13 elements with an aggregation-induced emission property. <i>National Science Review</i> , 2021 , 8, nwab049	10.8	9	
230	Optical, Electrical and Thermal Properties of Organic?Inorganic Hybrids with Conjugated Polymers Based on POSS Having Heterogeneous Substituents. <i>Polymers</i> , 2018 , 11,	4.5	9	

229	Preparation of Near-Infrared Emissive EConjugated Polymer Films Based on Boron-Fused Azobenzene Complexes with Perpendicularly Protruded Aryl Substituents. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000566	4.8	9
228	Experimental proof for emission annihilation through bond elongation at the carbon-carbon bond in o-carborane with fused biphenyl-substituted compounds. <i>Dalton Transactions</i> , 2021 , 50, 1025-1033	4.3	9
227	[2.2]Paracyclophane-based single molecular wire consisting of four Electron systems. <i>Canadian Journal of Chemistry</i> , 2017 , 95, 424-431	0.9	8
226	Synthesis and characterization of an alternating copolymer with 1,2-disubstituted and 9,12-disubstituted o-carborane units. <i>Polymer Journal</i> , 2014 , 46, 740-744	2.7	8
225	Synthesis and Characterization of [2.2]Paracyclophane-Containing Conjugated Microporous Polymers. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 572-579	2.6	8
224	Catch and release with DNA by imidazolium-presenting iron oxide nanoparticles via anion exchange. <i>Composite Interfaces</i> , 2013 , 20, 27-32	2.3	8
223	Poly(arylene-ethynylene)s containing dithia[3.3]metaphane. <i>Comptes Rendus Chimie</i> , 2009 , 12, 332-340	2.7	8
222	Effect of substituent groups for formation of organic-metal hybrid nanowires by charge-transfer of tetrathiafulvalene derivatives with metal ion. <i>Synthetic Metals</i> , 2009 , 159, 931-934	3.6	8
221	Processing dependence of surface morphology in condensation cured PDMS nanocomposites. <i>Polymer</i> , 2010 , 51, 5756-5763	3.9	8
220	Polymerization of bisdithiafulvenes with conjugated spacers using oxidative dimerization. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 2027-2033	2.5	8
219	Thermal and Solvent-Resistant Properties of OrganicIhorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Metal B ipyridyl Complex. <i>Polymer Journal</i> , 2003 , 35, 178-184	2.7	8
218	Synthesis and properties of PPE-type conjugated polymers containing tricarbonyl(arene)chromium unit in the main chain. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 1271-1276	2.3	8
217	Synthesis and characterization of transparent poly(2-methyl-2-oxazoline)(POZO)Nanadium oxide (V2O5) hybrids with reversible formation. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2202-2207		8
216	Self-Complexation of a Poly-Conjugated Donor Molecule with a Cyclic Acceptor. <i>Bulletin of the Chemical Society of Japan</i> , 2002 , 75, 2053-2057	5.1	8
215	EConjugated Polymers with Electroactive Thioketene Dimer Unit. <i>Macromolecules</i> , 2002 , 35, 3806-3809	5.5	8
214	Synthesis of a star-shaped polymer by coordination of 2,2'-bipyridyl-terminated poly(propylene glycol) with ruthenium ion. <i>Polymer Bulletin</i> , 1999 , 43, 9-12	2.4	8
213	Synthesis of poly(cyclodiborazane)s by hydroboration polymerization of dicyano compounds with tripylborane. <i>Polymer Bulletin</i> , 1999 , 43, 151-155	2.4	8
212	Tuning the NIR Absorption Properties of 1,3,4,6,9b-Pentaazaphenalene Derivatives Through the Spatially Separated Frontier Molecular Orbitals. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 777	<i>-</i> 1 783	8

(2001-2016)

211	The relationship between magneto-optical properties and molecular chirality. <i>NPG Asia Materials</i> , 2016 , 8, e251-e251	10.3	8
210	An optical sensor for discriminating the chemical compositions and sizes of plastic particles in water based on water-soluble networks consisting of polyhedral oligomeric silsesquioxane presenting dual-color luminescence. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 2690-2695	7.8	8
209	Through-Space Conjugated Polymers133-163		8
208	Extended germa[N]pericyclynes: synthesis and characterization. <i>Dalton Transactions</i> , 2017 , 46, 2281-22	28 <u>8</u> .3	7
207	Construction and properties of a light-harvesting antenna system for phosphorescent materials based on oligofluorene-tethered Ptporphyrins. <i>RSC Advances</i> , 2017 , 7, 10869-10874	3.7	7
206	Synthesis and Characterization of Ethynylated Germa[4]pericyclyne. Chemistry Letters, 2016, 45, 782-78	841.7	7
205	Stretchable Conductive Hybrid Films Consisting of Cubic Silsesquioxane-capped Polyurethane and Poly(3-hexylthiophene). <i>Polymers</i> , 2019 , 11,	4.5	7
204	Synthesis and photoluminescence behaviors of anthracene-layered polymers. <i>Journal of Polymer Science Part A</i> , 2014 , 52, 2815-2821	2.5	7
203	Fabrication of amorphous calcium carbonate composite particles-polymer multilayer films by a layer-by-layer method. <i>Polymer Composites</i> , 2015 , 36, 330-335	3	7
202	Stacked 1,3,5-tris[(2,5-dimethylphenyl)ethynyl]benzenes: dimer and conjugated microporous polymer. <i>Tetrahedron Letters</i> , 2011 , 52, 5504-5507	2	7
201	Synthesis of poly(vinylene-arsine)s-stabilized silver nanoparticles. <i>Applied Organometallic Chemistry</i> , 2010 , 24, 573-575	3.1	7
200	Hydroboration, haloboration and phenylboration polymerizations. <i>Macromolecular Symposia</i> , 1997 , 118, 111-116	0.8	7
199	Control of Self-Assembling Processes of Polyamidoamine Dendrimers and Pd Nanoparticles. <i>Macromolecules</i> , 2008 , 41, 1815-1824	5.5	7
198	Oxidation of Dithia[3.3]metacyclophane-Containing Through-Space Econjugated Polymer. <i>Polymer Bulletin</i> , 2006 , 57, 623-630	2.4	7
197	Synthesis of poly(diallyl phthalate) and silica gel polymer hybrids utilizing Interactions. <i>Silicon Chemistry</i> , 2002 , 1, 409-416		7
196	Unique crystal morphology of hydrophobic CaCO3 composite by sodium trisilanolate in a mixture of a water-miscible organic solvent and water. <i>Journal of Crystal Growth</i> , 2003 , 259, 411-418	1.6	7
195	Stable organoboron polymers prepared by hydroboration polymerization of dienes with tripylborane. <i>Polymer Bulletin</i> , 2001 , 46, 23-28	2.4	7
194	Synthesis and luminescent properties of bithiazole and dithiafulvene derivatives. <i>Synthetic Metals</i> , 2001 , 121, 1689-1690	3.6	7

193	Synthesis of poly(N,N-dimethylcarbamoylmethylene) as a polymer homolog of N,N-dimethylacetamide. <i>Polymer Bulletin</i> , 1999 , 43, 183-190	2.4	7
192	Reactions of Organoboron Polymers Prepared by Hydroboration Polymerization V. Synthesis of Polymers Having Cyano Groups by the Reaction with 2-Bromo-6-lithiopyridine. <i>Polymer Journal</i> , 1993 , 25, 891-895	2.7	7
191	Gelation of telechelic trimethoxysilyl-terminated polyoxazolines. <i>Polymer Bulletin</i> , 1993 , 31, 311-316	2.4	7
190	Development of the sensitizer for generating higher-energy photons under diluted condition via the triplet-triplet annihilation-supported upconversion. <i>Dyes and Pigments</i> , 2020 , 172, 107821	4.6	7
189	Arene-Inserted Extended Germa[n]pericyclynes: Synthesis, Structure, and Phosphorescence Properties. <i>Chemistry - A European Journal</i> , 2017 , 23, 10080-10086	4.8	6
188	Synthesis of hexabenzocoronene-layered compounds. <i>Tetrahedron Letters</i> , 2015 , 56, 2086-2090	2	6
187	Control of solution and solid-state emission with conjugated polymers based on the boron pyridinoiminate structure by ring fusion. <i>Polymer</i> , 2018 , 142, 127-131	3.9	6
186	Bulk Acyclic Diene Metathesis Polycondensation. <i>Macromolecular Chemistry and Physics</i> , 2019 , 220, 1900	02.263	6
185	Production of three radical cations from a single photon using a photo acid generator. <i>Tetrahedron Letters</i> , 2014 , 55, 1635-1639	2	6
184	EConjugated polymer-layered structures: synthesis and self-assembly. <i>Polymer Journal</i> , 2017 , 49, 203-20	18 .7	6
183	Porous epoxy microparticles prepared by an advanced aqueous method. <i>Materials Letters</i> , 2011 , 65, 165	5 5 -3 65	58 6
182	Electron-system-layered polymers comprising thiophene/furan oligomers. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 3664-3670	2.5	6
181	Versatile hybridization of conjugated polymers with silica. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1440	02	6
180	Amphiphilic Hybrid EConjugated Polymers Containing Polyhedral Oligomeric Silsesquioxanes. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1559-63	4.8	6
179	Microwave-assisted One-pot Synthesis of Luminescent OrganicIhorganic Hybrids via Simultaneous Process of Sol © el and Suzuki M iyaura Coupling Reactions. <i>Chemistry Letters</i> , 2010 , 39, 480-481	1.7	6
178	Novel aprotic polar polymers 2. Miscibility of aliphatic polysulfoxides. <i>Polymer Bulletin</i> , 1998 , 40, 503-50)& .4	6
177	Poly(p-phenyleneethynylene)Bilica Gel Hybrids without Any Compatibilizer. <i>Chemistry Letters</i> , 2008 , 37, 732-733	1.7	6
176	Effect of iron (III) hydroxide sol as a support for oligomerization of l-phenylalanine in aqueous solution. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 436-441	2.3	6

(2014-2007)

175	Self-organized Multilayer Films and Porous Nanocomposites of Gold Nanoparticles with Octa(3-aminopropyl)octasilsesquioxane. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2007 , 17, 447-457	3.2	6	
174	Synthesis of Electron-Donating Polymer Having Vinylogous TTF in the Main Chain. <i>Polymer Journal</i> , 2006 , 38, 1146-1151	2.7	6	
173	Control Crystallization of Calcium Carbonate in Aqueous Solution with In-Situ Radical Polymerization of Sodium Acrylate as a Latent Inductor for Crystal Nucleation and Growth. <i>Bulletin of the Chemical Society of Japan</i> , 2004 , 77, 827-833	5.1	6	
172	Synthesis of Soluble Complexan Polymers in Organic Solvents for Using as a Polymerthelate Precursor to YBa2Cu3O7-xThin Films. <i>Bulletin of the Chemical Society of Japan</i> , 2001 , 74, 571-577	5.1	6	
171	Synthesis of palladium clusters with surface initiator for polymerization of 2-methyl-2-oxazoline. <i>Polymer Bulletin</i> , 2001 , 46, 357-362	2.4	6	
170	Novel Aprotic Polar Polymers IV. Synthesis of Poly[N-bis(dimethylamino)phosphorylethylenimine] as a Polymer Homolog of Hexamethylphosphoramide. <i>Polymer Journal</i> , 1998 , 30, 1008-1010	2.7	6	
169	Thermal stability of blends of poly(vinyl chloride) with polyester elastomer. <i>Angewandte Makromolekulare Chemie</i> , 1995 , 226, 1-12		6	
168	Synthesis of amphiphilic silane coupling agents based on poly(2-ethyl-2-oxazoline) and their reactions with tetraethoxysilane. <i>Polymer Bulletin</i> , 1993 , 31, 317-322	2.4	6	
167	Synthesis of segmented copolyamides by using telechelic prepolymers. <i>Die Makromolekulare Chemie</i> , 1984 , 185, 2077-2087		6	
166	Synthesis and Application of Polymerizable Silicone Oligomers from Water Glass. <i>Polymer Journal</i> , 1984 , 16, 495-504	2.7	6	
165	Dimerization-Induced Solid-State Excimer Emission Showing Consecutive Thermochromic Luminescence Based on Acridine-Modified -Carboranes. <i>Inorganic Chemistry</i> , 2021 , 60, 8990-8997	5.1	6	
164	New Idea for Narrowing an Energy Gap by Selective Perturbation of One Frontier Molecular Orbital. <i>Chemistry Letters</i> , 2021 , 50, 269-279	1.7	6	
163	Fluoroalkyl POSS with Dual Functional Groups as a Molecular Filler for Lowering Refractive Indices and Improving Thermomechanical Properties of PMMA. <i>Polymers</i> , 2018 , 10,	4.5	6	
162	Recent Developments in Econjugated Macromolecules with Phosphorus Atoms in the Main Chain215-22	!7	6	
161	Synthesis of P-stereogenic macrocycles. <i>Heteroatom Chemistry</i> , 2017 , 28, e21354	1.2	5	
160	Oxygen-Resistant Electrochemiluminescence System with Polyhedral Oligomeric Silsesquioxane. <i>Polymers</i> , 2019 , 11,	4.5	5	
159	Spontaneous Formation of Gold Nanoparticles with Octa(3-aminopropyl) Polyhedral Oligomeric Silsesquioxane. <i>Bulletin of the Chemical Society of Japan</i> , 2015 , 88, 653-656	5.1	5	
158	Synthesis of cyclic compounds consisting of face-to-face p-oligophenyls. <i>Tetrahedron Letters</i> , 2014 , 55, 1631-1634	2	5	

157	Effect of interlocking between porous epoxy microparticles and elastomer on mechanical properties and deformation modes. <i>Polymer Testing</i> , 2012 , 31, 931-937	4.5	5
156	Nanohybridized Synthesis of Metal Nanoparticles and Their Organization. <i>Advances in Materials Research</i> , 2009 , 3-40		5
155	Synthesis of optically active polymers using P-chiral bisphosphines as anionic initiators. <i>Polymer Science - Series A</i> , 2009 , 51, 1218-1228	1.2	5
154	Xanthene-Based Oligothiophene-Layered Polymers. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 2407-2415	2.6	5
153	Synthesis and Optical Properties of Soluble Isoxazole-Containing Poly(p-phenylene)-Related Polymer. <i>Polymer Journal</i> , 2000 , 32, 73-74	2.7	5
152	Synthesis of Organoboron Polymers by Hydroboration Polymerization. <i>ACS Symposium Series</i> , 1994 , 398	3- ⊲ .1 4 .5	5
151	Polymerization chemistry of the family of cyclic imino ethers. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1991 , 47, 163-177		5
150	Surface and solution properties of polysiloxanepoly(methyl methacrylate) graft copolymer. Journal of Polymer Science Part A, 1989 , 27, 1907-1913	2.5	5
149	Rational design for thermochromic luminescence in amorphous polystyrene films with bis-o-carborane-substituted enhanced conjugated molecule having aggregation-induced luminochromism. <i>Aggregate</i> , 2021 , 2, e93	22.9	5
148	Synthesis of Submicrometer Zinc Oxide Particles and Zinc Oxide Nanowires Using Microwave Irradiation. <i>Chemistry Letters</i> , 2016 , 45, 508-510	1.7	5
147	The effect of alkyl chain lengths on the red-to-near-infrared emission of boron-fused azomethine conjugated polymers and their film-state stimuli-responsivities. <i>Polymer Chemistry</i> , 2021 , 12, 2752-2759	, 4.9	5
146	Controlling Energy Gaps of Econjugated Polymers by Multi-Fluorinated Boron-Fused Azobenzene Acceptors for Highly Efficient Near-Infrared Emission. <i>Chemistry - an Asian Journal</i> , 2021 , 16, 696-703	4.5	5
145	Pure-color and dual-color emission from BODIPY homopolymers containing the cardo boron structure. <i>Polymer Chemistry</i> , 2018 , 9, 3917-3921	4.9	5
144	Design Strategies and Recent Results for Near-Infrared-Emissive Materials Based on Element-Block EConjugated Polymers. <i>Bulletin of the Chemical Society of Japan</i> ,	5.1	5
143	Photoresponsive polymeric actuator cross-linked by an 8-armed polyhedral oligomeric silsesquioxane. <i>European Polymer Journal</i> , 2020 , 134, 109806	5.2	4
142	High Surface Area, Thermally Stable, Hydrophobic, Microporous, Rigid Gels Generated at Ambient from MeSi(OEt) /(EtO) SiCH CH Si(OEt) Mixtures by F -Catalyzed Hydrolysis. <i>Chemistry - A European Journal</i> , 2018 , 24, 274-280	4.8	4
141	Synthesis and Alkali-Metal-Ion Complexation of P-Stereogenic Diphosphacrowns. <i>ChemistryOpen</i> , 2016 , 5, 325-30	2.3	4
140	Preparation of flexible conductive films based on polymer composites with tetrathiafulvalene nanowires. <i>Synthetic Metals</i> , 2013 , 180, 49-53	3.6	4

139	Construction of aromatic-ring-layered structures using a terphenylene-layered polymer as the scaffold. <i>Polymer Chemistry</i> , 2013 , 4, 5361	4.9	4	
138	P-Stereogenic Diphosphacrowns: Facile Incorporation of Aromatic Rings. <i>Heterocycles</i> , 2015 , 91, 2295	0.8	4	
137	Preparation of poly(methyl methacrylate) and polystyrene-composite-filled porous epoxy microparticles via in-situ suspension polymerization. <i>Polymer Testing</i> , 2011 , 30, 841-847	4.5	4	
136	Chiral Etonjugated organoboron polymers. Pure and Applied Chemistry, 2009, 81, 433-437	2.1	4	
135	Novel aprotic polar polymers 3. Synthesis and properties of poly(phenyl vinyl sulfoxide). <i>Polymer Bulletin</i> , 1998 , 40, 615-621	2.4	4	
134	Molecular Recognizable Cucurbituril/Silica Hybrids. <i>Chemistry Letters</i> , 2008 , 37, 312-313	1.7	4	
133	Synthesis of sulfur-containing hyperbranched polymers by the bisthiolation polymerization of diethynyl disulfide derivatives. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 3580-3587	2.5	4	
132	Synthesis and properties of an amphiphilic dithiafulvene oligomer. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 3770-3775	2.5	4	
131	Synthesis of PAMAM Dendrimers Possessing [2.2]Paracyclophane on Their Surface. <i>Polymer Journal</i> , 2008 , 40, 779-783	2.7	4	
130	Self-Assembly of Functionalized Gold Nanoparticles with Rigid and Flexible Multifunctional Linkers. Journal of Macromolecular Science - Physics, 2006, 45, 549-555	1.4	4	
129	Synthesis and Properties of Conjugated Copolymer Based on Poly(p-phenylenevinylene) Containing Tricarbonyl(arene)chromium and Thiophene Units in the Main Chain. <i>Polymer Journal</i> , 2003 , 35, 446-449) ^{2.} 7	4	
128	Synthesis and properties of Econjugated dithiafulvene oligomers by addition of a monofunctionalized compound. <i>Journal of Polymer Science Part A</i> , 2003 , 41, 708-715	2.5	4	
127	The Sea Urchin-shaped CaCO3via Template Mineralization on Surface-functionalized Vaterite Particles by Tiopronin-protected Gold Nanoparticles. <i>Chemistry Letters</i> , 2004 , 33, 310-311	1.7	4	
126	Synthesis and Characterization of UV-Induced Interpenetrating Polymer Network (IPN) Structure of Poly(urethane acrylate) (UA Polymer)/Silica Hybrids. <i>Polymer Journal</i> , 2005 , 37, 686-693	2.7	4	
125	Self-Assembly of Gold Nanoparticles Utilizing a Charge-Transfer Interaction between Carbazolyl and Dinitrophenyl Units. <i>Bulletin of the Chemical Society of Japan</i> , 2005 , 78, 501-505	5.1	4	
124	Alternating boration copolymerization between diyne and bisallene. <i>Polymer Bulletin</i> , 1999 , 43, 117-120	02.4	4	
123	Silver(I)-induced coupling polymerization of bifunctional organoboron compounds. <i>Macromolecules</i> , 1993 , 26, 2643-2644	5.5	4	
122	Reactions of organoboron polymers prepared by hydroboration polymerization. <i>Polymer Bulletin</i> , 1994 , 33, 623-628	2.4	4	

121	Hydroboration Copolymerization of Dienes and Dicyano Compounds with Thexylborane. <i>Polymer Journal</i> , 1995 , 27, 90-97	2.7	4
120	Hydroboration of styryl-terminated polystyrene with bifunctional thexylborane. <i>Polymer Bulletin</i> , 1993 , 30, 215-222	2.4	4
119	Palladium(O)-mediated Formation of EMethylene-Ebutyrolactone from allyl 4-pentenoate. <i>Synthetic Communications</i> , 1981 , 11, 775-780	1.7	4
118	Switching between intramolecular charge transfer and excimer emissions in solids based on aryl-modified ethynyl-o-carboranes. <i>Cell Reports Physical Science</i> , 2022 , 3, 100758	6.1	4
117	Molecular fillers for increasing the refractive index of polystyrene hybrids by chain assembly at polyhedral oligomeric silsesquioxane. <i>Polymer Journal</i> , 2020 , 52, 523-528	2.7	4
116	Stimuli-Responsive Self-Assembly of EConjugated Liquids Triggers Circularly Polarized Luminescence. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 47127-47133	9.5	4
115	Discovery of Functional Luminescence Properties Based on Flexible and Bendable Boron-Fused Azomethine/Azobenzene Complexes with O,N,O-Type Tridentate Ligands. <i>Chemical Record</i> , 2021 , 21, 1358-1373	6.6	4
114	Synthesis of a platinum diketonate-containing polymer showing oxygen-resistant phosphorescence. <i>Macromolecular Rapid Communications</i> , 2015 , 36, 684-8	4.8	3
113	Control of interparticle spacing in stable aggregates of gold nanoparticles by light irradiation. <i>Polymer Journal</i> , 2015 , 47, 747-752	2.7	3
112	Integration of benzo[h]quinoline and Eextended dibenzo[b,f]silepins on pentacoordinate silicon. <i>RSC Advances</i> , 2015 , 5, 23331-23339	3.7	3
111	Self-assembly of [Au(CN)2]IComplexes with Tomato (Solanum lycopersicum) Steroidal Alkaloid Glycosides to Form Sheet or Tubular Structures. <i>Chemistry Letters</i> , 2018 , 47, 1010-1013	1.7	3
110	Microwave-driven enzyme deactivation using imidazolium salt-presenting silica nanoparticles. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2014 , 24, 4622-4625	2.9	3
109	Synthesis of EConjugated Polymers Containing Dibenzosilepin Moieties with Pentacoordinate Silicon. <i>Bulletin of the Chemical Society of Japan</i> , 2015 , 88, 1350-1355	5.1	3
108	Synthesis of P-Stereogenic Tetraphosphacrowns. Asian Journal of Organic Chemistry, 2015, 4, 1410-1410	53	3
107	Stereospecific Synthesis of trans-1,4-Diphosphacyclohexanes. <i>Heterocycles</i> , 2012 , 85, 2543	0.8	3
106	New Type of Donor-Acceptor Through-Space Conjugated Polymer. <i>International Journal of Polymer Science</i> , 2010 , 2010, 1-9	2.4	3
105	Blue emission from polymer nanocomposites: preparation and application of multicolored luminescent materials. <i>Polymer Journal</i> , 2011 , 43, 352-357	2.7	3
104	Poly(amide-imide)-Silica Gel Hybrids: Synthesis and Characterization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2009 , 46, 663-673	2.2	3

10	03	Aza-Wittig Polymerization: An Improved Molecular Design for Preparing AB-Type Poly(azomethine)s Utilizing Air-Stable Triphenylphosphine. <i>Macromolecules</i> , 2010 , 43, 1148-1151	5.5	3	
10	02	Aromatic ring-layered polymer containing 2,7-linked carbazole on xanthene. <i>Polymer Bulletin</i> , 2010 , 65, 465-476	2.4	3	
10	01	Effect of Modifier on Enzymatic Function of Poly[(N-Acylimino)ethylene]-Modified Lipases in Organic Solvents. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1997 , 34, 35-48	2.2	3	
10	00	Layer-by-layer films based on charge transfer interaction of ?-conjugated poly(dithiafulvene) and incorporation of gold nanoparticles into the films. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 1608-1	1613	3	
99	9	Preparation of osmium(II)-centered star-shaped polymer by the coordination of 2,2Ebipyridyl-terminated poly(oxyethylene) with osmium ion. <i>Macromolecular Research</i> , 2008 , 16, 70-72	1.9	3	
98	8	Synthesis of ⊞onjugated poly(dithiafulvene) by cycloaddition polymerization of aldothioketene from a bis(1,2,3-thiadiazole) monomer. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 5872-5876	2.5	3	
97	7	Different shapes of spherical vaterite by photo-induced cistrans isomerization of an azobenzene-containing polymer in a mixture of dimethyl sulfoxide and water. <i>Journal of Crystal Growth</i> , 2004 , 270, 655-661	1.6	3	
90	6	Intramolecular Charge-Transfer Polymers between Dithiafulvene and Pyridinium Units: Conjugative Effect through Saturated Polymethylene Chains. <i>Bulletin of the Chemical Society of Japan</i> , 2002 , 75, 267	′3 ⁵ - 2 67	9 3	
9.	5	A Simple In Situ Hydrogen Bond Interaction to Homogeneous Dispersion of Gold Nanoparticles in SiO2Matrix Using Dendrimer as Template. <i>Chemistry Letters</i> , 2002 , 31, 1170-1171	1.7	3	
94	4	Synthesis and Characterization of New Side-Chain Liquid Crystalline Polyoxazolines. <i>Polymer Journal</i> , 2000 , 32, 657-664	2.7	3	
93	3	Preparation of Soluble Poly(azomethine)s Having the Diketonate Metal Complex in the Main Chain. <i>Polymer Journal</i> , 2000 , 32, 316-320	2.7	3	
92	2	Novel Aprotic Polar Polymers V. Synthesis of Poly(HMPA) by Ring-Opening Polymerization. <i>Polymer Journal</i> , 1999 , 31, 506-509	2.7	3	
9	1	Preparation of Linear Econjugated Coordination Polymers Having Ruthenium(II) Complex in the Main Chain. <i>Journal of Inorganic and Organometallic Polymers</i> , 1999 , 9, 179-188		3	
90	0	Synthesis of polymers having 1,3-cyclobutanedione unit in the main chain by cycloaddition polymerization of bisketene. <i>Polymer Bulletin</i> , 1999 , 42, 367-372	2.4	3	
89	9			3	
88	8	Synthesis of Organic Inorganic Polymer Hybrids Containing Transition Metal Salts <i>Proceedings of the Japan Academy Series B: Physical and Biological Sciences</i> , 1994 , 70, 138-142	4	3	
87	7	Synthesis, surface accumulation, and micellar properties of amphiphilic block copolymers. <i>Journal of Polymer Science Part A</i> , 1989 , 27, 1883-1890	2.5	3	
80	6	Specific two-step decarboxylation of copper(I,II) .betaketocarboxylates. A novel type of regulation of the decarboxylation of .betaketo acids. <i>Journal of Organic Chemistry</i> , 1981 , 46, 4980-4987	4.2	3	

85	The Predictions of Air Pollution Levels by Nonphysical Models Based on Kalman Filtering Method. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1976, 98, 375-386	1.6	3
84	A new class of Etonjugated organoboron polymers. <i>Special Publication - Royal Society of Chemistry</i> , 2007 , 51-58	0.1	3
83	Paintable Hybrids with Thermally Stable Dual Emission Composed of Tetraphenylethene-Integrated POSS and MEH-PPV for Heat-Resistant White-Light Luminophores. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 12483-12490	9.5	3
82	Vapochromic Luminescent Econjugated Systems with Reversible Coordination-Number Control of Hypervalent Tin(IV)-Fused Azobenzene Complexes. <i>Chemistry - A European Journal</i> , 2021 , 27, 7561-7571	4.8	3
81	PPV-type Etonjugated polymers based on hypervalent tin(IV)-fused azobenzene complexes showing near-infrared absorption and emission. <i>Polymer Journal</i> ,	2.7	3
80	Luminescent Organoboron Element-Blocks Exhibiting AIE Properties. ACS Symposium Series, 2016, 157-	1 <i>3.</i> 4	3
79	Synthetic Strategies to Conjugated Main-Chain Metallopolymers251-287		3
78	Organo-Arsenic, Phosphorus, and Antimony Conjugated Polymers229-249		3
77	Controlling the Dual-Emission Character of Aryl-Modified o-Carboranes by Intramolecular CH???O Interaction Sites <i>Chemistry - A European Journal</i> , 2022 , e202200758	4.8	3
76	Luminescent Silicon Nanoparticles Surface-Modified with Chiral Molecules. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2015 , 28, 255-260	0.7	2
75	Synthesis of unsymmetrical P-stereogenic oligophosphines and chemoselective cleavage of phosphine-borane coordinate bonds. <i>Polymer Journal</i> , 2012 , 44, 579-585	2.7	2
74	P-Stereogenic Oligomers, Polymers, and Related Cyclic Compounds 2011 , 457-488		2
73	Synthesis of Helical Polymers with a Pentasilane Core. <i>Chemistry Letters</i> , 2009 , 38, 498-499	1.7	2
72	Synthesis of poly(cyclodiborazane)s by allylboration polymerization of dicyano compounds with trimethallylborane. <i>Macromolecular Symposia</i> , 1997 , 122, 83-88	0.8	2
71	Metal-induced soluble bending structure of polyazomethine having a tetradentate ligand in the main chain. <i>Macromolecular Rapid Communications</i> , 1998 , 19, 523-525	4.8	2
70	Functionalization of Inorganic Nanoparticles with Organic Molecules. <i>Kobunshi Ronbunshu</i> , 2008 , 65, 321-333	О	2
69	Polycondensation of activated L-valine and L-leucine esters with various lewis acids. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 543-547	2.5	2
68	Organoboron Polymers 2006 , 121-147		2

(2012-2006)

67	Polycondensation of Hamino acid esters in the presence of yttrium triflate as a Lewis acid. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 4731-4735	2.5	2
66	Synthesis and modification reaction of organoboron segmented block copolymer of allyl-telechelic poly(isobutylene). <i>Polymer Bulletin</i> , 2004 , 52, 25	2.4	2
65	Preparation of Polymer Complexes by Coordination of 2,2?-Bipyridyl-Modified Organic Polymer with Ruthenium Ion. <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 342, 87-90		2
64	Synthesis of hydroboration copolymer of TCNQ and formation of polymer charge transfer complex therefrom. <i>Polymer Bulletin</i> , 1999 , 42, 33-40	2.4	2
63	Effect of solvent polarity on enzymatic function of poly [(N-acylimino)ethylene] modified lipase. <i>Proceedings of the Japan Academy Series B: Physical and Biological Sciences</i> , 1999 , 75, 49-53	4	2
62	Preparation and transcarboxylation of magnesium(II) and manganese(II) 2-oxoimidazolidine-1-carboxylato-complexes. <i>Journal of the Chemical Society Chemical Communications</i> , 1979 , 797		2
61	High Refractive-Index Hybrids Consisting of Water-Soluble Matrices with Bipyridine-Modified Polyhedral Oligomeric Silsesquioxane and Lanthanoid Cations. <i>Polymers</i> , 2020 , 12,	4.5	2
60	Reversible Vapochromic Luminescence Accompanied by Planar Half-Chair Conformational Change of a Propeller-Shaped Boron Diketiminate Complex. <i>Chemistry - A European Journal</i> , 2021 , 27, 9302-93	1 2 .8	2
59	Synthesis of organic-inorganic polymer hybrids utilizing in-situ anionic hydrogen-transfer polymerization of acrylamide. <i>Polymer</i> , 2016 , 92, 13-17	3.9	2
58	Organometallic Polycondensation for Conjugated Polymers1-33		2
57	Fully Conjugated Nano-Sized Macrocycles: Syntheses and Versatile Properties165-194		2
56	Regulation of solid-state dual-emission properties by switching luminescence processes based on a bis-o-carborane-modified anthracene triad. <i>Materials Chemistry Frontiers</i> ,	7.8	2
55	Conformation-Dependent Electron Donation of Nido-Carborane Substituents and Its Influence on Phosphorescence of Tris(2,2?-bipyridyl)ruthenium(II) Complex. <i>Crystals</i> , 2022 , 12, 688	2.3	2
54	Preparation of photo-responsive hybrid materials based on hydrogels involving imidazolium-presenting gold nanoparticles. <i>Polymer Journal</i> , 2016 , 48, 177-181	2.7	1
53	Polystyrene P olyhedral Oligomeric Silsesquioxane CoreBhell Element-block Polymer Particles Fabricated via Heterocoagulation Method. <i>Chemistry Letters</i> , 2016 , 45, 1168-1170	1.7	1
52	Synthesis of block copolymers with a pentasilane core. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 948-53	4.8	1
51	Effects of Diphenyl Dichalcogenides on the Radical Polymerization of Diethynyl Disulfide Derivative. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2009 , 19, 55-66	3.2	1
50	Regulation of dispersion/aggregation of phosphonium-presenting iron oxide nanoparticles by anion exchange. <i>Composite Interfaces</i> , 2012 , 19, 557-564	2.3	1

49	Preparation and Esterification Activity of Poly[(N-Propionyl)-Iminoethylene] Modified Lipase from Candida Cylindracea. <i>Biocatalysis and Biotransformation</i> , 1997 , 15, 91-100	2.5	1
48	Chemical Modification of Lipase with Poly[(N-Acylimino)ethylene]s Having a Hydrophobic Component at the Polymer End. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 1997 , 34, 123-132	2.2	1
47	Synthesis of polymer having 毗riketone unit in the main chain and its copper (II) complex. <i>Polymer Bulletin</i> , 1998 , 40, 701-706	2.4	1
46	3-(2,2?:6?,2??-Terpyridin-4?-yloxy)propyl toluene-4-sulfonate. <i>Acta Crystallographica Section E:</i> Structure Reports Online, 2007 , 63, o2311-o2313		1
45	Bidentate coordination effect on polycondensation of amino acid esters between metal triflates and methoxy groups. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 2864-2868	2.5	1
44	Oxidative Polymerization of Silylthioketene Dimer. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 2113-2117	4.8	1
43	Self-Organized Nanocomposite of Gold Nanoparticles and Electron Organic Molecules. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2006 , 43, 1801-1805	2.2	1
42	Self-assembly of Functionalized Gold Nanoparticles with Rigid and Flexible Multifunctional Linkers. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2006 , 43, 1733-1739	2.2	1
41	Synthesis of organoaluminum polymers with aluminum hitrogen ring in their main-chain. <i>Main Group Chemistry</i> , 2007 , 5, 287-295	0.6	1
40	Synthesis and Properties of PPVBased (BArene)Cr(CO)3Containing Polymers Having Alkyldiphenylamine or Triarylamine in the Main Chain. <i>Polymer Bulletin</i> , 2004 , 52, 141	2.4	1
39	Oxidation polymerization of a charge-transfer complex of 2,6-bis(2-thienyl)-1,4-dithiafulvene with 7,7,8,8-tetracyanoquinodimethane. <i>Journal of Polymer Science Part A</i> , 2005 , 43, 6592-6598	2.5	1
38	Synthesis, crystal structure, solid-state optical property and CH activation of sp3 carbon of highly-stable 1-(2?,6?-dimesitylphenyl)-2,3,4,5-tetraphenylborole. <i>New Journal of Chemistry</i> , 2021 , 45, 22569-22573	3.6	1
37	Synthesis of Optically Active Econjugated Molecules Based on Planar Chiral [2.2]Paracyclophane. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2018 , 76, 1055-1065	0.2	1
36	Rational Designs of AIE-Active Molecules and Luminochromic Materials Based on Group 13 Element-Containing Element-Blocks 2019 , 27-42		1
35	Cyclophane-Based Estacked Polymers 2014 , 151-184		1
34	Element-Block Materials: New Concept for the Development of Advanced Hybrids and Inorganic Polymers 2019 , 3-25		1
33	Modulation of stimuli-responsiveness toward acid vapor between real-time and write-erase responses based on conjugated polymers containing azobenzene and Schiff base moieties. <i>Journal of Polymer Science</i> , 2021 , 59, 1596-1602	2.4	1
32	Positive Luminescent Sensor for Aerobic Conditions Based on Polyhedral Oligomeric Silsesquioxane Networks. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 162-165	2.2	1

31	Recent developments in stimuli-responsive luminescent polymers composed of boron compounds. Polymer Chemistry,	4.9	1
30	Synthesis of poly(vinyl alcohol) / silica gel polymer hybrids by in-situ hydrolysis method 1998 , 12, 755		1
29	Helical Polyacetylene Prepared in a Liquid Crystal Field289-301		1
28	Effects of Regioregularity of <code>GConjugated Polymers Composed of Boron #Diketiminate on Their Stimuli-Responsive Luminescence. Macromolecular Chemistry and Physics, 2100504</code>	2.6	1
27	Synthesis of Through-space Conjugated Polymers. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 480-491	0.2	О
26	The Effect of the Substituent Positions on Self-Assembly Behaviors of Liquid-Crystalline 1,3,4,6,9b-Pentaazaphenalene Derivatives. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 1854-185	58 ^{5.1}	O
25	Molecular Designs for Solid-State Luminescent Properties and Recent Progresses on the Development of Functional Luminescent Solid Materials 2021 , 309-341		О
24	Modulation of Properties by Ion Changing Based on Luminescent Ionic Salts Consisting of Spirobi(boron ketoiminate). <i>Molecules</i> , 2022 , 27, 3438	4.8	O
23	Front Cover: Design and Luminescence Chromism of Fused Boron Complexes Having Constant Emission Efficiencies in Solution and in the Amorphous and Crystalline States (Eur. J. Org. Chem. 35/2017). European Journal of Organic Chemistry, 2017 , 2017, 5178-5178	3.2	
22	Development and Applications of Designable Hybrids Based on POSS “Element-Blocks”. <i>Kobunshi Ronbunshu</i> , 2017 , 74, 145-161	Ο	
21	Macromol. Chem. Phys. 3/2016. Macromolecular Chemistry and Physics, 2016, 217, 520-520	2.6	
20	Facile Preparation of Hybrid Fluids from Ionic Liquid-Inorganic Nanoparticles:. <i>ACS Symposium Series</i> , 2010 , 211-220	0.4	
19	Thermochemical Reaction of Organic-Inorganic Polymer Hybrids from Poly(vinyl pyrrolidone) and Alkoxysilane as a Reaction Field. <i>Kobunshi Ronbunshu</i> , 2010 , 67, 129-134	О	
18	Thermochemical Reaction of Polystyrene-Silica Polymer Hybrids as a Reaction Field. <i>Kobunshi Ronbunshu</i> , 2010 , 67, 516-520	Ο	
17	Preparation of Ionic Liquid-Modified Inorganic Nanoparticles and Their Biomedical Application. <i>ACS Symposium Series</i> , 2010 , 103-114	0.4	
16	Hydrophilicity-controllable Microporous Hybrid Materials by Anion Exchange. <i>Chemistry Letters</i> , 2008 , 37, 580-581	1.7	
15	Poly(dithiafulvene)s containing alkoxy groups and mesogenic moiety in the side chain: synthesis, properties and their charge-transfer complex. <i>Polymer Bulletin</i> , 2007 , 59, 45-52	2.4	
14	Ring-Collapsed Alternating Copolymerization of Organoarsenic Homocycles and Acetylenic Compounds. <i>ACS Symposium Series</i> , 2006 , 416-428	0.4	

13	Amphiphilic Tetrathiafulvalene Derivative: Charge-Transfer Complexation Behavior in Solutions. <i>Bulletin of the Chemical Society of Japan</i> , 2005 , 78, 519-522	5.1
12	Synthesis and properties of oxygen-, methylene-, and alkylene-bridged poly(dithiafulvene)s. <i>Journal of Polymer Science Part A</i> , 2001 , 39, 3593-3603	2.5
11	Organic-Inorganic Hybrid Materials Based on Silsesquioxanes. <i>Springer Series in Materials Science</i> , 2004 , 197-208	0.9
10	Functional Polymers Derived from 2-Oxazolines 1991 , 167-178	
9	Hydroboration Polymerization 1994 , 41-52	
8	Gelation of Styrene-Acrylonitrile Copolymer via Cyclodiborazane Formation. <i>Nihon Reoroji Gakkaishi</i> , 1997 , 25, 197-198	0.8
7	Construction of a Conjugation Systemwith Heteroatoms in Polymer MainChains 2017, 413-437	
6	Organoboron Conjugated Polymers195-213	
5	Functional Hyperbranched Polymers Constructed from Acetylenic An-Type Building Blocks91-131	
4	Development of Organic-Inorganic Hybrid Materials. <i>Journal of the Society of Powder Technology, Japan</i> , 2013 , 50, 670-681	0.3
3	Synthesis of Optically Active, X-Shaped, Conjugated Compounds and Dendrimers Based on Planar Chiral [2.2]Paracyclophane, Leading to Highly Emissive Circularly Polarized Luminescence. <i>Chemistry - A European Journal</i> , 2016 , 22, 2189-2189	4.8
2	Designs for AIE Molecules and Functional Luminescent Materials Based on Boron-containing Element-blocks 2022 , 341-365	
1	Fundamental chemistry and applications of boron complexes having aggregation-induced emission properties 2022 , 23-44	