
Lihui Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1763579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A "donor–acceptor―structured semiconductor polymer for near infrared fluorescence imaging guided photodynamic therapy. Journal of Innovative Optical Health Sciences, 2022, 15, .	1.0	3
2	Ternary organic solar cells: Improved optical and morphological properties allow an enhanced efficiency. Chinese Chemical Letters, 2021, 32, 1359-1362.	9.0	6
3	Precise fluorination of polymeric donors towards efficient non-fullerene organic solar cells with balanced open circuit voltage, short circuit current and fill factor. Journal of Materials Chemistry A, 2021, 9, 14752-14757.	10.3	17
4	Modifying side chain of non-fullerene acceptors to obtain efficient organic solar cells with high fill factor. Chemical Physics, 2021, 546, 111172.	1.9	5
5	Fluorination Enhances NIRâ€I Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie - International Edition, 2020, 59, 21049-21057.	13.8	108
6	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie, 2020, 132, 21235-21243.	2.0	15
7	Fine-tuning the energy levels and morphology <i>via</i> fluorination and thermal annealing enable high efficiency non-fullerene organic solar cells. Materials Chemistry Frontiers, 2020, 4, 3310-3318.	5.9	17
8	Efficient organic solar cells based on a new "Y-series―non-fullerene acceptor with an asymmetric electron-deficient-core. Chemical Communications, 2020, 56, 4340-4343.	4.1	51
9	Quinoxaline-Based Semiconducting Polymer Dots for in Vivo NIR-II Fluorescence Imaging. Macromolecules, 2019, 52, 5735-5740.	4.8	46
10	Realizing 8.6% Efficiency from Nonâ€Halogenated Solvent Processed Additive Free All Polymer Solar Cells with a Quinoxaline Based Polymer. Solar Rrl, 2019, 3, 1800340.	5.8	20
11	A Medium Bandgap D–A Copolymer Based on 4-Alkyl-3,5-difluorophenyl Substituted Quinoxaline Unit for High Performance Solar Cells. Macromolecules, 2018, 51, 2838-2846.	4.8	47
12	Side-chain fluorination on the pyrido[3,4-b]pyrazine unit towards efficient photovoltaic polymers. Science China Chemistry, 2018, 61, 206-214.	8.2	13
13	Synthesis and photovoltaic properties of a non-fullerene acceptor with F-phenylalkoxy as a side chain. New Journal of Chemistry, 2018, 42, 19279-19284.	2.8	4
14	Benzodichalcogenophene-diketopyrrolopyrrole small molecules as donors for efficient solution processable solar cells. Chemical Physics, 2017, 493, 77-84.	1.9	9
15	A new fluoropyrido[3,4-b]pyrazine based polymer for efficient photovoltaics. Polymer Chemistry, 2017, 8, 2227-2234.	3.9	4
16	Synthesis and characterization of 5,6-bis(n-octyloxy)[2,1,3] selenadiazole-based polymers for photovoltaic applications. Polymer Bulletin, 2016, 73, 385-398.	3.3	5
17	A simple strategy to the side chain functionalization on the quinoxaline unit for efficient polymer solar cells. Chemical Communications, 2016, 52, 6881-6884.	4.1	79
18	Effect of fluorination on the performance of poly(thieno[2,3-f]benzofuran-co-benzothiadiazole) derivatives. RSC Advances, 2015, 5, 30145-30152.	3.6	10

Lihui Jiang

#	Article	IF	CITATIONS
19	New 5-Octyl-thieno[3,4-c]pyrrole-4,6-dione Based Polymers: Synthesis and Photovoltaic Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 752-760.	2.2	5
20	A new small molecule with indolone chromophore as the electron accepting unit for efficient organic solar cells. Dyes and Pigments, 2015, 113, 458-464.	3.7	18
21	High performance polymer solar cells based on a two dimensional conjugated polymer from alkylthienyl-substituted benzodifuran and benzothiadiazole. Polymer Chemistry, 2014, 5, 5002-5008.	3.9	27