Baokun Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1763294/publications.pdf

Version: 2024-02-01

35	1,624	16	33
papers	citations	h-index	g-index
35	35	35	1993
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Increasing the greenness of an organic acid through deep eutectic solvation and further polymerisation. Green Energy and Environment, 2022, 7, 840-853.	8.7	10
2	Removal of trace DNA toxic compounds using a Poly(deep eutectic solvent)@Biomass based on multi-physical interactions. Journal of Hazardous Materials, 2021, 418, 126369.	12.4	6
3	Photoluminescence with an unusual open-loop and rigid delocalized conjugated structure in quantum dots. Journal of Colloid and Interface Science, 2021, 601, 385-396.	9.4	O
4	A choline chloride-acrylic acid deep eutectic solvent polymer based on Fe3O4 particles and MoS2 sheets (poly(ChCl-AA DES)@Fe3O4@MoS2) with specific recognition and good antibacterial properties for β-lactoglobulin in milk. Talanta, 2019, 197, 567-577.	5 . 5	48
5	Deep eutectic solvents functionalized polymers for easily and efficiently promoting biocatalysis. Journal of Catalysis, 2019, 374, 306-319.	6.2	27
6	Environmentally friendly and non-polluting solvent pretreatment of palm samples for polyphenol analysis using choline chloride deep eutectic solvents. Journal of Chromatography A, 2017, 1492, 1-11.	3.7	38
7	Exploration of a ternary deep eutectic solvent of methyltriphenylphosphonium bromide/chalcone/formic acid for the selective recognition of rutin and quercetin in Herba Artemisiae Scopariae. Journal of Separation Science, 2017, 40, 3248-3256.	2.5	19
8	Ternary choline chloride/caffeic acid/ethylene glycol deep eutectic solvent as both a monomer and template in a molecularly imprinted polymer. Journal of Separation Science, 2017, 40, 2286-2291.	2.5	29
9	Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent. Journal of Chromatography A, 2017, 1530, 23-34.	3.7	57
10	Exploration of deep eutectic solventâ€based mesoporous silica spheres as highâ€performance size exclusion chromatography packing materials. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
11	Exploration of Mesoporous Siliceous Particle-Based High-Performance Size Exclusion Chromatography for the Quantitation of Biomacromolecular Polysaccharides. Journal of Liquid Chromatography and Related Technologies, 2015, 38, 774-780.	1.0	2
12	Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of Separation Science, 2015, 38, 1053-1064.	2.5	377
13	Effects of \hat{l}^2 -glucanase-Immobilized Silica on Hydrolysis of Polysaccharides in Chamaecyparis obtusa Residues. Journal of Liquid Chromatography and Related Technologies, 2015, 38, 613-618.	1.0	2
14	Simultaneous Extraction of Flavonoids from Chamaecyparis obtusa Using Deep Eutectic Solvents as Additives of Conventional Extractions Solvents. Journal of Chromatographic Science, 2015, 53, 836-840.	1.4	41
15	Pretreatment of Biodiesel by Esterification of Palmitic Acid in Brønsted–Lowry Acid Based Deep Eutectic Solvents. Analytical Letters, 2014, 47, 2443-2450.	1.8	10
16	Deep Eutectic Solvent-Based HS-SME Coupled with GC for the Analysis of Bioactive Terpenoids in Chamaecyparis obtusa Leaves. Chromatographia, 2014, 77, 373-377.	1.3	84
17	Extraction of catechin compounds from green tea with a new green solvent. Chemical Research in Chinese Universities, 2014, 30, 37-41.	2.6	48
18	Determination of Terpenoids in Chamaecyparis obtusa Leaves by Headspace Single-Drop Microextraction with Gas Chromatography Detection. Analytical Letters, 2014, 47, 48-57.	1.8	3

#	Article	IF	Citations
19	A Green Deep Eutectic Solvent-Based Ultrasound-Assisted Method to Extract Astaxanthin from Shrimp Byproducts. Analytical Letters, 2014, 47, 742-749.	1.8	53
20	Application of Deep Eutectic Solvents as Additives in Ultrasonic Extraction of Two Phenolic Acids from <i>Herba Artemisiae Scopariae </i> Analytical Letters, 2014, 47, 1476-1484.	1.8	46
21	Polyhydroxy glucose functionalized silica for the dehydration of bio-ethanol distillate. Bioprocess and Biosystems Engineering, 2014, 37, 1417-1425.	3.4	2
22	Preparation of chlorocholine chloride/urea deep eutectic solvent-modified silica and an examination of the ion exchange properties of modified silica as a Lewis adduct. Analytical and Bioanalytical Chemistry, 2014, 406, 4309-4313.	3.7	28
23	Dehydration of Ethanol by Facile Synthesized Glucose-Based Silica. Applied Biochemistry and Biotechnology, 2013, 169, 1056-1068.	2.9	7
24	Recent developments in deep eutectic solvents in chemical sciences. Monatshefte Fýr Chemie, 2013, 144, 1427-1454.	1.8	392
25	Development of Gas Chromatography Analysis of Fatty Acids in Marine Organisms. Journal of Chromatographic Science, 2013, 51, 599-607.	1.4	24
26	Dispersive Solid Phase Extraction with an Ionic Liquid Modified Polymer for Determination of Cyanazine and Atrazine in Tomatoes. Analytical Letters, 2013, 46, 2359-2371.	1.8	5
27	Using poly([1-vinyl-3-hexylimidazolium] [bis(trifluoromethylsulfonyl)imide]) to adsorb bio-ethanol from a Chamaecyparis obtuse leaves fermentation broth. Bioresource Technology, 2013, 137, 25-32.	9.6	10
28	DETERMINATION OF DIURETIC DRUGS IN HUMAN URINE USING DISPERSIVE LIQUID–LIQUID MICROEXTRACTION BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 2069-2081.	1.0	2
29	Examination of 1-methylimidazole series ionic liquids in the extraction of flavonoids from Chamaecyparis obtuse leaves using a response surface methodology. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 933, 8-14.	2.3	15
30	Solid-Phase Extraction Combined with Dispersive Liquid-Liquid Microextraction for the Determination of Three Benzimidazole Pesticides (Carbendazim, Thiabendazole, and Thiophanate-Methyl) in Tomatoes. Analytical Letters, 2013, 46, 557-568.	1.8	14
31	CLOUD POINT EXTRACTION OF AROMATIC AMINES FROM ENVIRONMENTAL WATER SAMPLES COUPLED WITH HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Liquid Chromatography and Related Technologies, 2013, 36, 1312-1322.	1.0	2
32	Adsorption of lactic acid onto three ionic liquidâ€modified porous polymers. Journal of Applied Polymer Science, 2013, 129, 1306-1313.	2.6	6
33	Zinc Ion Doped Solid-Phase Extraction of Eicosapentaenoic Acid and Docosahexaenoic Acid from <i>Antarctic Krill</i> . Analytical Letters, 2012, 45, 2675-2686.	1.8	0
34	Using linear solvation energy relationship model to study the retention factor of solute in liquid chromatography. Journal of Physical Organic Chemistry, 2012, 25, 1058-1071.	1.9	8
35	Application of ionic liquid for extraction and separation of bioactive compounds from plants. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 904, 1-21.	2.3	199