Isabelle C Arnold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1763290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. Journal of Clinical Investigation, 2011, 121, 3088-3093.	8.2	391
2	DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori–specific immune tolerance, and asthma protection. Journal of Clinical Investigation, 2012, 122, 1082-1096.	8.2	260
3	Tolerance Rather Than Immunity Protects From Helicobacter pylori–Induced Gastric Preneoplasia. Gastroenterology, 2011, 140, 199-209.e8.	1.3	250
4	Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis. Immunity, 2015, 43, 187-199.	14.3	150
5	The Immunomodulatory Properties of Helicobacter pylori Confer Protection Against Allergic and Chronic Inflammatory Disorders. Frontiers in Cellular and Infection Microbiology, 2012, 2, 10.	3.9	103
6	Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. Journal of Experimental Medicine, 2018, 215, 2055-2072.	8.5	93
7	The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. International Archives of Allergy and Immunology, 2020, 181, 11-23.	2.1	65
8	H. pylori exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection. Cell Communication and Signaling, 2011, 9, 25.	6.5	63
9	Comparative Whole Genome Sequence Analysis of the Carcinogenic Bacterial Model Pathogen Helicobacter felis. Genome Biology and Evolution, 2011, 3, 302-308.	2.5	55
10	NLRP3 Controls the Development of Gastrointestinal CD11b + Dendritic Cells in the Steady State and during Chronic Bacterial Infection. Cell Reports, 2017, 21, 3860-3872.	6.4	52
11	Foxp3+ T reg cells control psoriasiform inflammation by restraining an IFN-l–driven CD8+ T cell response. Journal of Experimental Medicine, 2018, 215, 1987-1998.	8.5	50
12	IRF5 guides monocytes toward an inflammatory CD11c ⁺ macrophage phenotype and promotes intestinal inflammation. Science Immunology, 2020, 5, .	11.9	48
13	The GM-CSF–IRF5 signaling axis in eosinophils promotes antitumor immunity through activation of type 1 T cell responses. Journal of Experimental Medicine, 2020, 217, .	8.5	45
14	Helicobacter hepaticus infection in BALB/c mice abolishes subunit-vaccine-induced protection against M. tuberculosis. Vaccine, 2015, 33, 1808-1814.	3.8	41
15	BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues. PLoS Pathogens, 2019, 15, e1007866.	4.7	38
16	Mechanisms of persistence, innate immune activation and immunomodulation by the gastric pathogen Helicobacter pylori. Current Opinion in Microbiology, 2020, 54, 1-10.	5.1	33
17	Intestinal eosinophils, homeostasis and response to bacterial intrusion. Seminars in Immunopathology, 2021, 43, 295-306.	6.1	21
18	The C-Terminally Encoded, MHC Class II-Restricted T Cell Antigenicity of the Helicobacter pylori Virulence Factor CagA Promotes Gastric Preneoplasia. Journal of Immunology, 2011, 186, 6165-6172.	0.8	19

ISABELLE C ARNOLD

#	Article	IF	CITATIONS
19	<i>Helicobacter pylori</i> : Does Gastritis Prevent Colitis?. Inflammatory Intestinal Diseases, 2016, 1, 102-112.	1.9	13
20	ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions. Blood, 2021, 137, 2958-2969.	1.4	11
21	TGF-β production by eosinophils drives the expansion of peripherally induced neuropilinâ^' RORγt+ regulatory T-cells during bacterial and allergen challenge. Mucosal Immunology, 2022, 15, 504-514.	6.0	11
22	Differential regulation of β-catenin-mediated transcription via N-Âand C-terminal co-factors governs identity of murine intestinal epithelial stem cells. Nature Communications, 2021, 12, 1368.	12.8	9
23	IRF4 Expression Is Required for the Immunoregulatory Activity of Conventional Type 2 Dendritic Cells in Settings of Chronic Bacterial Infection and Cancer. Journal of Immunology, 2020, 205, 1933-1943.	0.8	8
24	Adapting to their new home: Eosinophils remodel the gut architecture. Journal of Experimental Medicine, 2022, 219, .	8.5	0