Miki Kinoshita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1762972/publications.pdf Version: 2024-02-01

MIKI KINOSHITA

#	Article	IF	CITATIONS
1	Interactions of bacterial flagellar chaperone–substrate complexes with <scp>FlhA</scp> contribute to coâ€ordinating assembly of the flagellar filament. Molecular Microbiology, 2013, 90, 1249-1261.	2.5	86
2	Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates. Molecular Microbiology, 2012, 83, 775-788.	2.5	76
3	Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8812-8817.	7.1	73
4	The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Scientific Reports, 2014, 4, 7579.	3.3	70
5	Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex. PLoS Biology, 2017, 15, e2002281.	5.6	69
6	Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3633-3638.	7.1	57
7	Interaction between Flil ATPase and a flagellar chaperone FliT during bacterial flagellar protein export. Molecular Microbiology, 2012, 83, 168-178.	2.5	50
8	Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus. Structure, 2019, 27, 965-976.e6.	3.3	39
9	FliH and FliI ensure efficient energy coupling of flagellar type <scp>III</scp> protein export in <i>Salmonella</i> . MicrobiologyOpen, 2016, 5, 424-435.	3.0	36
10	Native flagellar MS ring is formed by 34 subunits with 23-fold and 11-fold subsymmetries. Nature Communications, 2021, 12, 4223.	12.8	34
11	The role of intrinsically disordered Câ€ŧerminal region of FliK in substrate specificity switching of the bacterial flagellar type III export apparatus. Molecular Microbiology, 2017, 105, 572-588.	2.5	30
12	Molecular Organization and Assembly of the Export Apparatus of Flagellar Type III Secretion Systems. Current Topics in Microbiology and Immunology, 2019, 427, 91-107.	1.1	29
13	Rearrangements of αâ€helical structures of FlgN chaperone control the binding affinity for its cognate substrates during flagellar type III export. Molecular Microbiology, 2016, 101, 656-670.	2.5	23
14	Two Distinct Conformations in 34 FliF Subunits Generate Three Different Symmetries within the Flagellar MS-Ring. MBio, 2021, 12, .	4.1	20
15	Fuel of the Bacterial Flagellar Type III Protein Export Apparatus. Methods in Molecular Biology, 2017, 1593, 3-16.	0.9	19
16	FliK-Driven Conformational Rearrangements of FlhA and FlhB Are Required for Export Switching of the Flagellar Protein Export Apparatus. Journal of Bacteriology, 2020, 202, .	2.2	16
17	The flexible linker of the secreted FliK ruler is required for export switching of the flagellar protein export apparatus. Scientific Reports, 2020, 10, 838.	3.3	16
18	The FlhA linker mediates flagellar protein export switching during flagellar assembly. Communications Biology, 2021, 4, 646.	4.4	16

Μικι Κινοςηιτά

#	Article	IF	CITATIONS
19	The FlgN chaperone activates the Na+-driven engine of the Salmonella flagellar protein export apparatus. Communications Biology, 2021, 4, 335.	4.4	13
20	A positive charge region of Salmonella FliI is required for ATPase formation and efficient flagellar protein export. Communications Biology, 2021, 4, 464.	4.4	12
21	Mutational analysis of the Câ€ŧerminal cytoplasmic domain of FlhB, a transmembrane component of the flagellar type III protein export apparatus in <i>Salmonella</i> . Genes To Cells, 2019, 24, 408-421.	1.2	11
22	Membrane voltage-dependent activation mechanism of the bacterial flagellar protein export apparatus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2026587118.	7.1	11
23	Multiple Roles of Flagellar Export Chaperones for Efficient and Robust Flagellar Filament Formation in Salmonella. Frontiers in Microbiology, 2021, 12, 756044.	3.5	11
24	Insight Into Distinct Functional Roles of the Flagellar ATPase Complex for Flagellar Assembly in Salmonella. Frontiers in Microbiology, 2022, 13, .	3.5	11