Hirohisa Nagatani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1762596/publications.pdf

Version: 2024-02-01

69 papers

1,255 citations

331670 21 h-index 33 g-index

74 all docs

74 docs citations

times ranked

74

810 citing authors

#	Article	IF	CITATIONS
1	Direct Spectrophotometric Measurement of Demetalation Kinetics of 5,10,15,20-Tetraphenylporphyrinatozinc(II) at the Liquidâ 'Liquid Interface by a Centrifugal Liquid Membrane Method. Analytical Chemistry, 1998, 70, 2860-2865.	6.5	92
2	Self-Assembled Molecular Rafts at Liquid Liquid Interfaces for Four-Electron Oxygen Reduction. Journal of the American Chemical Society, 2012, 134, 498-506.	13.7	87
3	Adsorption Behavior of Charged Zinc Porphyrins at the Water/1,2-Dichloroethane Interface Studied by Potential Modulated Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 6869-6876.	2.6	73
4	A Kinetic Model for Adsorption and Transfer of Ionic Species at Polarized Liquid Liquid Interfaces as Studied by Potential Modulated Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 9463-9473.	2.6	64
5	Adsorption and Aggregation of meso-Tetrakis(4-carboxyphenyl)porphyrinato Zinc(II) at the Polarized Water 1,2-Dichloroethane Interface. Journal of Physical Chemistry B, 2003, 107, 786-790.	2.6	54
6	Surface Second Harmonic Generation of Cationic Water-Soluble Porphyrins at the Polarized Water \mid 1,2-Dichloroethane Interface. Langmuir, 2002, 18, 6647-6652.	3.5	49
7	Photoinduced Electron Transfer at Liquid Liquid Interfaces. Part IV. Orientation and Reactivity of Zinc Tetra(4-carboxyphenyl) Porphyrin Self-Assembled at the Water 1,2-Dichloroethane Junction. Journal of the American Chemical Society, 2000, 122, 10943-10948.	13.7	47
8	Two-Phase Stopped-Flow Measurement of the Protonation of Tetraphenylporphyrin at the Liquidâ^'Liquid Interface. Analytical Chemistry, 1996, 68, 1250-1253.	6.5	44
9	Interfacial Nanochemistry in Liquid–Liquid Extraction Systems. Bulletin of the Chemical Society of Japan, 2003, 76, 1471-1492.	3.2	44
10	Potential-Dependent Adsorption of Amphoteric Rhodamine Dyes at the Oil/Water Interface as Studied by Potential-Modulated Fluorescence Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 9480-9487.	3.1	42
11	Highly Selective Synergism for the Extraction of Lanthanoid(III) Ions with \hat{I}^2 -Diketones and Trioctylphosphine Oxide in an Ionic Liquid. Analytical Sciences, 2014, 30, 323-325.	1.6	33
12	Potential-Modulation Spectroscopy at Solid/Liquid and Liquid/Liquid Interfaces. Analytical Sciences, 2007, 23, 1041-1048.	1.6	32
13	Mechanistic aspects associated with the oxidation of l-ascorbic acid at the 1,2-dichloroethanea^£water interface. Journal of Electroanalytical Chemistry, 2001, 510, 43-49.	3.8	29
14	Photocurrents at polarized liquid liquid interfaces enhanced by a gold nanoparticle film. Physical Chemistry Chemical Physics, 2011, 13, 17704.	2.8	29
15	Spectroelectrochemical analysis of ion-transfer and adsorption of the PAMAM dendrimer at a polarized liquid liquid interface. Electrochimica Acta, 2008, 53, 6428-6433.	5.2	28
16	Interfacial Behavior of Tetrapyridylporphyrin Monolayer Arrays. Langmuir, 2006, 22, 681-686.	3.5	27
17	Kinetic study of Ni(II) and Zn(II) complexation with a pyridylazo extractant by a centrifugal liquid membrane method. Analytica Chimica Acta, 2000, 419, 107-114.	5.4	25
18	Polarized total-reflection x-ray absorption fine structure for self-assembled monolayer of zinc porphyrin at air–water interface. Journal of Chemical Physics, 2003, 118, 10369-10371.	3.0	24

#	Article	IF	CITATIONS
19	Direct spectroelectrochemical observation of interfacial species at the polarized water/1,2-dichloroethane interface by ac potential modulation technique. Journal of Electroanalytical Chemistry, 2006, 588, 99-105.	3.8	24
20	Transfer and adsorption of 1-pyrene sulfonate at the water $\hat{1}.1.2$ -dichloroethane interface studied by potential modulated fluorescence spectroscopy. Journal of Electroanalytical Chemistry, 2002, 518, 1-5.	3.8	23
21	Zinc(II) Porphyrins at the Airâ^'Water Interface As Studied by Polarized Total-Reflection X-ray Absorption Fine Structure. Langmuir, 2006, 22, 209-212.	3.5	21
22	Encapsulation of Anilinonaphthalenesulfonates in Carboxylate-Terminated PAMAM Dendrimer at the Polarized Water 1,2-Dichloroethane Interface. Langmuir, 2010, 26, 17686-17694.	3.5	21
23	Spectroelectrochemical Characterization of Dendrimer–Porphyrin Associates at Polarized Liquid Liquid Interfaces. Langmuir, 2014, 30, 937-945.	3.5	20
24	Extended X-ray Absorption Fine Structure of Copper(II) Complexes at the Air-Water Interface by a Polarized Total-Reflection X-ray Absorption Technique. Analytical Sciences, 2009, 25, 475-480.	1.6	19
25	Formation and interfacial adsorption of the [mu]-oxo dimer of (5,10,15,20-tetraphenylporphyrinato)iron(III) in dodecane/aqueous acid systems. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 247-252.	1.7	18
26	Interfacial behavior of sulforhodamine 101 at the polarized water/1,2-dichloroethane interface studied by spectroelectrochemical techniques. Analytical and Bioanalytical Chemistry, 2006, 386, 633-638.	3.7	17
27	Heterogeneous Fluorescence Quenching Reaction between (5,10,15,20-Tetraphenylporphyrinato)zinc(II) and Methylviologen at Dodecane-Water Interface. Chemistry Letters, 1999, 28, 701-702.	1.3	16
28	Interfacial Selfâ€Assembly of Waterâ€Soluble Cationic Porphyrins for the Reduction of Oxygen to Water. Angewandte Chemie - International Edition, 2012, 51, 6447-6451.	13.8	15
29	Photoinduced Electron Transfer of PAMAM Dendrimer–Zinc(II) Porphyrin Associates at Polarized Liquid Liquid Interfaces. Langmuir, 2015, 31, 6237-6244.	3.5	15
30	A True Electron-Transfer Reaction between 5,10,15,20-Tetraphenylporphyrinato Cadmium(II) and the Hexacyanoferrate Couple at the Nitrobenzene/Water Interface. Analytical Sciences, 2004, 20, 1567-1573.	1.6	14
31	Ion transfer and adsorption behavior of ionizable drugs affected by PAMAM dendrimers at the water 1,2- dichloroethane interface. Electrochimica Acta, 2016, 191, 631-639.	5.2	14
32	Polarized Total-Reflection X-ray Absorption Fine Structure of Zinc(II) Porphyrin at the Heptaneâ ^{^2} Water Interface. Journal of Physical Chemistry C, 2010, 114, 18583-18587.	3.1	13
33	Potential-Induced Aggregation of Anionic Porphyrins at Liquid Liquid Interfaces. Langmuir, 2017, 33, 10134-10142.	3.5	13
34	Synergistic Extraction Equilibrium of Lanthanide(III) Ions with Benzoylacetone and a Neutral Ligand in an Ionic Liquid. Solvent Extraction Research and Development, 2018, 25, 79-89.	0.4	12
35	Specific Adsorption of Metal Complexes of Tetraphenylporphyrin at Dodecane-Water Interface. Chemistry Letters, 1997, 26, 167-168.	1.3	11
36	Potential-modulated fluorescence spectroscopy of the membrane potential-sensitive dye di-4-ANEPPS at the 1,2-dichloroethane/water interface. Analytical and Bioanalytical Chemistry, 2009, 395, 1055-1061.	3.7	11

#	Article	IF	Citations
37	Aggregation-Induced Emission of Water-Soluble Tetraphenylethene Derivatives at Polarized Liquid Liquid Interfaces. Langmuir, 2020, 36, 10597-10605.	3.5	11
38	A light-switching pyrene probe to detect phase-separated biomolecules. IScience, 2021, 24, 102865.	4.1	11
39	Potential-Dependent Adsorption and Orientation of <i>meso-</i> Substituted Porphyrins at Liquid Liquid Interfaces Studied by Polarization-Modulation Total Internal Reflection Fluorescence Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 7248-7255.	3.1	10
40	Photoinduced Electron Transfer of 5,10,15,20-Tetraphenylporphyrinato Zinc(II) at the Polarized Water/1,2-Dichloroethane Interface. Analytical Sciences, 2004, 20, 1575-1579.	1.6	9
41	Gold nanoparticles-enhanced photocurrent at a dye-sensitized liquid liquid interface. Electrochemistry Communications, 2011, 13, 985-988.	4.7	9
42	Development of the total-reflection XAFS method for the liquid-liquid interface. Journal of Physics: Conference Series, 2007, 83, 012019.	0.4	8
43	Molecular association between flavin derivatives and dendritic polymers at the water 1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2016, 782, 288-292.	3.8	8
44	Potential-modulated fluorescence spectroscopy of zwitterionic and dicationic membrane-potential-sensitive dyes at the 1,2-dichloroethane/water interface. Analytical and Bioanalytical Chemistry, 2012, 404, 785-792.	3.7	7
45	Communication: Coordination structure of bromide ions associated with hexyltrimethylammonium cations at liquid/liquid interfaces under potentiostatic control as studied by total-reflection X-ray absorption fine structure. Journal of Chemical Physics, 2014, 140, 101101.	3.0	6
46	Photoluminescent Detection of Nitrite with Carbon Nanodots Prepared by Microwave-assisted Synthesis. Analytical Sciences, 2015, 31, 481-485.	1.6	6
47	Determination of the Electrostatic Potential of Oil-in-Water Emulsion Droplets by Combined Use of Two Membrane Potential-Sensitive Dyes. Analytical Sciences, 2017, 33, 813-819.	1.6	6
48	Mechanistic Analysis of Ion Association between Dendrigraft Poly- <scp>I</scp> -lysine and 8-Anilino-1-naphthalenesulfonate at Liquid Liquid Interfaces. Langmuir, 2018, 34, 3237-3243.	3.5	6
49	X-ray absorption fine structure of bromide ions attracted by cationic surfactants at the heptane-water interface. Journal of Physics: Conference Series, 2009, 190, 012061.	0.4	5
50	An electroreflectance approach to study out the puzzling state of myoglobin in a DDAB film on a pyrolytic graphite electrode surface. Electrochemistry Communications, 2007, 9, 2018-2022.	4.7	4
51	Combined use of two membrane-potential-sensitive dyes for determination of the Galvani potential difference across a biomimetic oil/water interface. Analytical and Bioanalytical Chemistry, 2014, 406, 3407-3414.	3.7	4
52	A soft on/off switch based on the electrochemically reversible H–J interconversion of a floating porphyrin membrane. Chemical Science, 2021, 12, 10227-10232.	7.4	4
53	Interfacial association of ferritin with anionic fluorescent probe at the 1,2-dichloroethane/water interface. Journal of Electroanalytical Chemistry, 2021, 888, 115175.	3.8	4
54	Anomalous lanthanoid(III) species extracted with 4-isopropyltropolone and neutral ligands in an ionic liquid. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2019, 150, 821-829.	1.8	2

#	Article	IF	CITATIONS
55	lon transfer and adsorption of water-soluble metal complexes of 8-hydroxyquinoline derivatives at the water \mid 1,2-dichloroethane interface. Journal of Electroanalytical Chemistry, 2020, 856, 113566.	3.8	2
56	Synergistic Ion-pair Extraction and Separation of Trivalent Lanthanoid Ions with 4-Isopropyltropolone and 1,10-Phenanthroline into <i>o</i> -Dichlorobenzene. Analytical Sciences, 2020, 36, 479-484.	1.6	2
57	Phase-stable optical activity measurement by common-path spectral interferometry. Optics Letters, 2020, 45, 5868.	3.3	2
58	Valence Discriminative Detection of Metal Cations by a Chromotropic Acid-grafted Glassy Carbon Electrode. Analytical Sciences, 2013, 29, 95-99.	1.6	1
59	Facilitated Transfer of Alkali and Alkaline Earth-metal Ions to the Oil Water Interface Where the Fluorescent Dye diOC ₂ (3) is Adsorbed. Bunseki Kagaku, 2016, 65, 71-77.	0.2	1
60	Dehydrationâ€fragmentation mechanism of cathinones and their metabolites in ESIâ€CID. Journal of Mass Spectrometry, 2020, 55, e4538.	1.6	1
61	Transfer Mechanism of Anthracycline Antibiotics and Their Ion Association with PAMAM Dendrimer at Liquid Liquid Interfaces**. ChemElectroChem, 2022, 9, .	3.4	1
62	å^†å‰å¦çš"手法ã•ã®åŒæ™,測定ï¼^1)紫å¤Â·å•è¦−å^†å‰æ³•. Electrochemistry, 2006, 74, 512	2-5 117 4	0
63	The 65th Annual Meeting of the International Society of Electrochemistry (ISE2014). Review of Polarography, 2015, 61, 46-50.	0.1	0
64	Size evaluation of gold nanoparticles using transient grating method with deep-UV excitation pulses. Chemical Physics Letters, 2021, 778, 138763.	2.6	0
65	X-ray Absorption Fine Structure. Oleoscience, 2012, 12, 11-16.	0.0	0
66	Molecular Encapsulation and Association of Ionic Species with Dendrimers at Polarized Liquid Liquid Interfaces. ECS Meeting Abstracts, 2016, , .	0.0	0
67	Interfacial Behavior of Fluorescent Species Associated with Dendritic Polymers at Polarized Liquid \mid Liquid \mid Liquid Interfaces. ECS Meeting Abstracts, 2016, , .	0.0	0
68	Molecular diffusion and aggregate formation of photoproducts from ketoprofen in aqueous solutions. Chemical Physics Letters, 2022, 795, 139511.	2.6	0
69	Cover Feature: Transfer Mechanism of Anthracycline Antibiotics and Their Ion Association with PAMAM Dendrimer at Liquid Liquid Interfaces (ChemElectroChem 13/2022). ChemElectroChem, 2022, 9, .	3.4	O