Elżbieta Skiba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1762574/publications.pdf Version: 2024-02-01

FI Å1/ RIFTA SKIRA

#	Article	IF	CITATIONS
1	One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale, 2010, 2, 2209.	5.6	73
2	Analysis of Triticum aestivum seedling response to the excess of zinc. Protoplasma, 2016, 253, 367-377.	2.1	36
3	Influence of 2,4-D and MCPA herbicides on uptake and translocation of heavy metals in wheat (Triticum aestivum L.). Environmental Pollution, 2017, 220, 882-890.	7.5	27
4	Cerium Oxide Nanoparticles Affect Heavy Metals Uptake by Pea in a Divergent Way than Their Ionic and Bulk Counterparts. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	23
5	Effect of alkali and alkaline earth metals addition on Ni/ZrO2 catalyst activity in cellulose conversion. Journal of Thermal Analysis and Calorimetry, 2016, 126, 103-110.	3.6	22
6	Thermal Decomposition of Bi(III), Cd(II), Pb(II) and Cu(II) Thiocyanates. Magyar Apróvad Közlemények, 2001, 65, 231-239.	1.4	17
7	Additive interactions of nanoparticulate ZnO with copper, manganese and iron in Pisum sativum L., a hydroponic study. Scientific Reports, 2020, 10, 13574.	3.3	15
8	Commercial phenoxyacetic herbicides control heavy metal uptake by wheat in a divergent way than pure active substances alone. Environmental Sciences Europe, 2017, 29, 26.	5.5	13
9	The Combined Effect of ZnO and CeO2 Nanoparticles on Pisum sativum L.: A Photosynthesis and Nutrients Uptake Study. Cells, 2021, 10, 3105.	4.1	13
10	Evaluation of Rhodamine B Photocatalytic Degradation over BaTiO3-MnO2 Ceramic Materials. Materials, 2021, 14, 3152.	2.9	12
11	Metal Homeostasis and Gas Exchange Dynamics in Pisum sativum L. Exposed to Cerium Oxide Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 8497.	4.1	7
12	Thermal decomposition of analytically important thiocyanatochromates(III). Part 2. Thermochimica Acta, 1993, 223, 93-100.	2.7	4
13	Thermal decomposition of analytically important thiocyanatochromates(III). Part 1. Thermochimica Acta, 1993, 217, 199-206.	2.7	4
14	Metal-Based Nanoparticles' Interactions with Plants. Nanotechnology in the Life Sciences, 2021, , 145-169.	0.6	4
15	Thermal decomposition of analytically important thiocyanatochromates(III). Thermochimica Acta, 2000, 359, 23-28.	2.7	1
16	9th International Conference Plant Functioning Under Environmental Stress September 12-15, 2012 Cracow Poland. Acta Physiologiae Plantarum, 2012, 34, 1-120.	2.1	0