Donglu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1762296/publications.pdf Version: 2024-02-01

ΠΟΝΟΙΙΙ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	An Integrated Strategy for Assessing the Metabolic Stability and Biotransformation of Macrocyclic Peptides in Drug Discovery toward Oral Delivery. Analytical Chemistry, 2022, 94, 2032-2041.	6.5	6
2	Biotransformation novel advances – 2021 year in review. Drug Metabolism Reviews, 2022, 54, 207-245.	3.6	3
3	Design and Measurement of Drug Tissue Concentration Asymmetry and Tissue Exposure-Effect (Tissue) Tj ETQq	1 1 0.784 6.4	314 rgBT /Ov
4	Comparative assessment for rat strain differences in metabolic profiles of 14 drugs in Wistar Han and Sprague Dawley hepatocytes. Xenobiotica, 2021, 51, 15-23.	1.1	5
5	Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy. Journal of Medicinal Chemistry, 2021, 64, 2576-2607.	6.4	91
6	Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 1: Exploration of Antibody Linker, Payload Loading, and Payload Molecular Properties. Journal of Medicinal Chemistry, 2021, 64, 2534-2575.	6.4	79
7	Intestinal Excretion, Intestinal Recirculation, and Renal Tubule Reabsorption Are Underappreciated Mechanisms That Drive the Distribution and Pharmacokinetic Behavior of Small Molecule Drugs. Journal of Medicinal Chemistry, 2021, 64, 7045-7059.	6.4	9
8	Linker Design Impacts Antibody-Drug Conjugate Pharmacokinetics and Efficacy via Modulating the Stability and Payload Release Efficiency. Frontiers in Pharmacology, 2021, 12, 687926.	3.5	40
9	Antibody Conjugation of a Chimeric BET Degrader Enables <i>inâ€vivo</i> Activity. ChemMedChem, 2020, 15, 17-25.	3.2	111
10	Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126907.	2.2	75
11	NADPH-Independent Inactivation of CYP2B6 and NADPH-Dependent Inactivation of CYP3A4/5 by PBD: Potential Implication for Assessing Covalent Modulators for Time-Dependent Inhibition. Drug Metabolism and Disposition, 2020, 48, 655-661.	3.3	13
12	Novel advances in biotransformation and bioactivation research—2019 year in review. Drug Metabolism Reviews, 2020, 52, 333-365.	3.6	5
13	Quantitation of DNA by nuclease P1 digestion and UPLC-MS/MS to assess binding efficiency of pyrrolobenzodiazepine. Journal of Pharmaceutical Analysis, 2020, 10, 247-252.	5.3	4
14	Bioactivation of α,β-Unsaturated Carboxylic Acids Through Acyl Glucuronidation. Drug Metabolism and Disposition, 2020, 48, 819-829.	3.3	5
15	Novel Homodimer Metabolites of GDC-0994 via Cytochrome P450–Catalyzed Radical Coupling. Drug Metabolism and Disposition, 2020, 48, 521-527.	3.3	5
16	Exposure-Efficacy Analysis of Antibody-Drug Conjugates Delivering an Excessive Level of Payload to Tissues. Drug Metabolism and Disposition, 2019, 47, 1146-1155.	3.3	20
17	Biotransformation and bioactivation reactions – 2018 literature highlights. Drug Metabolism Reviews, 2019, 51, 121-161.	3.6	6
18	Carfilzomib Is Not an Appropriate Payload of Antibody-Drug Conjugates Due to Rapid Inactivation by Lysosomal Enzymes. Drug Metabolism and Disposition, 2019, 47, 884-889.	3.3	4

Donglu Zhang

#	Article	IF	CITATIONS
19	Catalytic Cleavage of Disulfide Bonds in Small Molecules and Linkers of Antibody–Drug Conjugates. Drug Metabolism and Disposition, 2019, 47, 1156-1163.	3.3	27
20	A Novel Depurination Methodology to Assess DNA Alkylation of Chloro-Bis-Seco-Cyclopropylbenzoindoles Allowed for Comparison of Minor-Groove Reactivity. Drug Metabolism and Disposition, 2019, 47, 547-555.	3.3	4
21	Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule–Related Therapeutic Modalities. Drug Metabolism and Disposition, 2019, 47, 1122-1135.	3.3	79
22	Modulating Antibody–Drug Conjugate Payload Metabolism by Conjugation Site and Linker Modification. Bioconjugate Chemistry, 2018, 29, 1155-1167.	3.6	50
23	Intratumoral Payload Concentration Correlates with the Activity of Antibody–Drug Conjugates. Molecular Cancer Therapeutics, 2018, 17, 677-685.	4.1	30
24	Immolation of <i>p</i> -Aminobenzyl Ether Linker and Payload Potency and Stability Determine the Cell-Killing Activity of Antibody–Drug Conjugates with Phenol-Containing Payloads. Bioconjugate Chemistry, 2018, 29, 267-274.	3.6	27
25	LC–MS Challenges in Characterizing and Quantifying Monoclonal Antibodies (mAb) and Antibody-Drug Conjugates (ADC) in Biological Samples. Current Pharmacology Reports, 2018, 4, 45-63.	3.0	21
26	Clinical significance of CYP2C19 polymorphisms on the metabolism and pharmacokinetics of 11βâ€hydroxysteroid dehydrogenase typeâ€1 inhibitor BMSâ€823778. British Journal of Clinical Pharmacology, 2018, 84, 130-141.	2.4	11
27	Exploration of Pyrrolobenzodiazepine (PBD)-Dimers Containing Disulfide-Based Prodrugs as Payloads for Antibody–Drug Conjugates. Molecular Pharmaceutics, 2018, 15, 3979-3996.	4.6	16
28	Modulating Therapeutic Activity and Toxicity of Pyrrolobenzodiazepine Antibody–Drug Conjugates with Self-Immolative Disulfide Linkers. Molecular Cancer Therapeutics, 2017, 16, 871-878.	4.1	59
29	Development of Efficient Chemistry to Generate Site-Specific Disulfide-Linked Protein– and Peptide–Payload Conjugates: Application to THIOMAB Antibody–Drug Conjugates. Bioconjugate Chemistry, 2017, 28, 2086-2098.	3.6	43
30	Cathepsin B Is Dispensable for Cellular Processing of Cathepsin B-Cleavable Antibody–Drug Conjugates. Cancer Research, 2017, 77, 7027-7037.	0.9	99
31	Glucuronides as Potential Anionic Substrates of Human Cytochrome P450 2C8 (CYP2C8). Journal of Medicinal Chemistry, 2017, 60, 8691-8705.	6.4	22
32	Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chemical Science, 2017, 8, 366-370.	7.4	88
33	Linker Immolation Determines Cell Killing Activity of Disulfide-Linked Pyrrolobenzodiazepine Antibody–Drug Conjugates. ACS Medicinal Chemistry Letters, 2016, 7, 988-993.	2.8	52
34	Non-cytochrome P450-mediated bioactivation and its toxicological relevance. Drug Metabolism Reviews, 2016, 48, 473-501.	3.6	26
35	Chemical Structure and Concentration of Intratumor Catabolites Determine Efficacy of Antibody Drug Conjugates. Drug Metabolism and Disposition, 2016, 44, 1517-1523.	3.3	25
36	Antibody Drug Conjugates Differentiate Uptake and DNA Alkylation of Pyrrolobenzodiazepines in Tumors from Organs of Xenograft Mice. Drug Metabolism and Disposition, 2016, 44, 1958-1962.	3.3	23

Donglu Zhang

#	Article	IF	CITATIONS
37	Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody–drug conjugates. Nature Chemistry, 2016, 8, 1112-1119.	13.6	106
38	Effect of Rifampin on the Pharmacokinetics of Apixaban, an Oral Direct Inhibitor of Factor Xa. American Journal of Cardiovascular Drugs, 2016, 16, 119-127.	2.2	87
39	Effect of Activated Charcoal on Apixaban Pharmacokinetics in Healthy Subjects. American Journal of Cardiovascular Drugs, 2014, 14, 147-154.	2.2	133
40	Characterization of Efflux Transporters Involved in Distribution and Disposition of Apixaban. Drug Metabolism and Disposition, 2013, 41, 827-835.	3.3	109
41	Investigating the Enteroenteric Recirculation of Apixaban, a Factor Xa Inhibitor: Administration of Activated Charcoal to Bile Duct-Cannulated Rats and Dogs Receiving an Intravenous Dose and Use of Drug Transporter Knockout Rats. Drug Metabolism and Disposition, 2013, 41, 906-915.	3.3	49
42	Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharmaceutica Sinica B, 2012, 2, 549-561.	12.0	217
43	Preclinical discovery of apixaban, a direct and orally bioavailable factor Xa inhibitor. Journal of Thrombosis and Thrombolysis, 2011, 31, 478-492.	2.1	163
44	Preclinical pharmacokinetics and pharmacodynamics of apixaban, a potent and selective factor Xa inhibitor. European Journal of Drug Metabolism and Pharmacokinetics, 2011, 36, 129-139.	1.6	78
45	Plasma Stability-Dependent Circulation of Acyl Glucuronide Metabolites in Humans: How Circulating Metabolite Profiles of Muraglitazar and Peliglitazar Can Lead to Misleading Risk Assessment. Drug Metabolism and Disposition, 2011, 39, 123-131.	3.3	18
46	Metabolism and Disposition of ¹⁴ C-Labeled Peliglitazar in Humans. Drug Metabolism and Disposition, 2011, 39, 228-238.	3.3	17
47	In Vitro Assessment of Metabolic Drug-Drug Interaction Potential of Apixaban through Cytochrome P450 Phenotyping, Inhibition, and Induction Studies. Drug Metabolism and Disposition, 2010, 38, 448-458.	3.3	219
48	Apixaban Metabolism and Pharmacokinetics after Oral Administration to Humans. Drug Metabolism and Disposition, 2009, 37, 74-81.	3.3	561
49	Comparative Metabolism of ¹⁴ C-Labeled Apixaban in Mice, Rats, Rabbits, Dogs, and Humans. Drug Metabolism and Disposition, 2009, 37, 1738-1748.	3.3	99
50	Reductive Isoxazole Ring Opening of the Anticoagulant Razaxaban Is the Major Metabolic Clearance Pathway in Rats and Dogs. Drug Metabolism and Disposition, 2008, 36, 303-315.	3.3	48
51	Comparative Metabolism of Radiolabeled Muraglitazar in Animals and Humans by Quantitative and Qualitative Metabolite Profiling. Drug Metabolism and Disposition, 2007, 35, 150-167.	3.3	35
52	GLUCURONIDATION AS A MAJOR METABOLIC CLEARANCE PATHWAY OF 14C-LABELED MURAGLITAZAR IN HUMANS: METABOLIC PROFILES IN SUBJECTS WITH OR WITHOUT BILE COLLECTION. Drug Metabolism and Disposition, 2006, 34, 427-439.	3.3	34
53	GLUCURONIDATION CONVERTS GEMFIBROZIL TO A POTENT, METABOLISM-DEPENDENT INHIBITOR OF CYP2C8: IMPLICATIONS FOR DRUG-DRUG INTERACTIONS. Drug Metabolism and Disposition, 2006, 34, 191-197.	3.3	306
54	METABOLISM, PHARMACOKINETICS, AND PROTEIN COVALENT BINDING OF RADIOLABELED MAXIPOST (BMS-204352) IN HUMANS. Drug Metabolism and Disposition, 2005, 33, 83-93.	3.3	50