
Viktor Melnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1762030/publications.pdf Version: 2024-02-01

VINTOR MELNIK

#	Article	IF	CITATIONS
1	Heteroalleles in Common Wheat: Multiple Differences between Allelic Variants of the Gli-B1 Locus. International Journal of Molecular Sciences, 2021, 22, 1832.	4.1	3
2	Some intra-varietal non-uniformities in Triticum aestivum can be explained as repeated spontaneous mutations at the Gli loci. Journal of Cereal Science, 2021, 100, 103243.	3.7	0
3	Over 40% of 450 registered wheat cultivars (Triticum aestivum) worldwide are composed of multiple biotypes. Journal of Cereal Science, 2020, 96, 103088.	3.7	2
4	Congruity of the Polymorphisms in the Expressed and Noncoding Parts of the Gli-B1 Locus in Common Wheat. Agronomy, 2020, 10, 1510.	3.0	2
5	Registered Crop Cultivars Composed of Multiple Biotypes: What About "DUS―rules?. Modern Concepts & Developments in Agronomy, 2020, 7, .	0.1	0
6	Types, frequencies and value of intra-varietal genotypic non-uniformity in common wheat cultivars: Authentic biotypes and foreign seeds. Journal of Cereal Science, 2019, 89, 102813.	3.7	4
7	Gliadin genotypes worldwide for spring wheats (Triticum aestivum L.) 2. Strong differentiation of polymorphism between countries and regions of origin. Journal of Cereal Science, 2019, 87, 311-317.	3.7	6
8	Gliadin genotypes worldwide for spring wheats (Triticum aestivum L.) 1. Genetic diversity and grain-quality gliadin alleles during the 20th century. Journal of Cereal Science, 2019, 87, 172-177.	3.7	3
9	A catalog of gliadin alleles: Polymorphism of 20th-century common wheat germplasm. Crop Journal, 2018, 6, 628-641.	5.2	34
10	Comparison of alleles at the Gli-1 loci of common wheat by means of two-dimensional electrophoresis of gliadin and RFLP analysis. Cytology and Genetics, 2018, 52, 11-20.	0.5	2
11	Comparison of Alleles at Gli-2 Loci of Common Wheat by Means of Two-Dimensional Electrophoresis of Gliadin. Cytology and Genetics, 2018, 52, 87-94.	0.5	2
12	Genome polymorphism of the synthetic species xTrititrigia cziczinii Tsvel. inferred from AFLP analysis. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 648-653.	1.1	8
13	Genetic diversity of common wheat varieties at the gliadin-coding loci. Russian Journal of Genetics, 2015, 51, 262-271.	0.6	9
14	Genetic diversity of modern Russian durum wheat cultivars at the gliadin-coding loci. Russian Journal of Genetics, 2014, 50, 483-488.	0.6	7
15	Efficiency of evaluating the carcinogenicity of chemical substances in short-term tests and the SAR model. Russian Journal of Genetics, 2009, 45, 1480-1489.	0.6	1
16	Dependence of the carcinogenicity of nitric compounds on their structural characteristics. Russian Journal of Genetics, 2006, 42, 490-497.	0.6	0
17	Use of Compound Structural Descriptors for Increasing the Efficiency of QSAR Study. Russian Journal of Genetics, 2005, 41, 814-821.	0.6	5
18	Population Genetic Analysis of the Association Between the BRCA1 and P53 Gene Polymorphisms and the Risk of Sporadic Breast Cancer. Russian Journal of Genetics, 2005, 41, 913-921.	0.6	3

#	Article	IF	CITATIONS
19	Structure-activity relationships of antimutagenic flavonoids. Ecological Genetics, 2005, 3, 11-18.	0.5	2
20	Title is missing!. Russian Journal of Genetics, 2003, 39, 386-389.	0.6	3