Zheng-Yi Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761699/publications.pdf

Version: 2024-02-01

309 papers 6,166 citations

36 h-index 123420 61 g-index

310 all docs

310 docs citations

times ranked

310

4114 citing authors

#	Article	IF	CITATIONS
1	Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science, 2018, 94, 114-173.	32.8	629
2	Thermomechanical processing of advanced high strength steels. Progress in Materials Science, 2018, 94, 174-242.	32.8	295
3	A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribology International, 2017, 109, 398-408.	5.9	180
4	Stir casting process for manufacture of Al–SiC composites. Rare Metals, 2017, 36, 581-590.	7.1	171
5	A review of modern advancements in micro drilling techniques. Journal of Manufacturing Processes, 2017, 29, 343-375.	5.9	146
6	Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network. Computational Materials Science, 2014, 92, 47-56.	3.0	134
7	Friction and wear characteristics of TiO 2 nano-additive water-based lubricant on ferritic stainless steel. Tribology International, 2018, 117, 24-38.	5.9	126
8	Mechanical properties and tribological behavior of aluminum matrix composites reinforced with in-situ AlB2 particles. Tribology International, 2016, 98, 41-47.	5.9	89
9	3D FEM analysis of strip shape during multi-pass rolling in a 6-high CVC cold rolling mill. International Journal of Advanced Manufacturing Technology, 2014, 74, 1733-1745.	3.0	67
10	Analysis of TiO 2 nano-additive water-based lubricants in hot rolling of microalloyed steel. Journal of Manufacturing Processes, 2017, 27, 26-36.	5.9	63
11	Micromanufacturing of composite materials: a review. International Journal of Extreme Manufacturing, 2019, 1, 012004.	12.7	62
12	Synergistic tribological performance of a water based lubricant using graphene oxide and alumina hybrid nanoparticles as additives. Tribology International, 2019, 135, 170-180.	5.9	61
13	Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere. Surface and Coatings Technology, 2014, 258, 257-267.	4.8	58
14	Tribological Performance and Lubrication Mechanism of Alumina Nanoparticle Water-Based Suspensions in Ball-on-Three-Plate Testing. Tribology Letters, 2017, 65, 1.	2.6	56
15	Towards understanding the brittle–ductile transition in the extreme manufacturing. International Journal of Extreme Manufacturing, 2021, 3, 022001.	12.7	55
16	Breakaway oxidation behaviour of ferritic stainless steels at $1150 \hat{A}^{\circ} \text{C}$ in humid air. Corrosion Science, 2016, 108, 11-22.	6.6	54
17	Effects of temperature and strain rate on microstructure and mechanical properties of high chromium cast iron/low carbon steel bimetal prepared by hot diffusion-compression bonding. Materials & Design, 2014, 63, 650-657.	5.1	52
18	The pH-dependent structural and tribological behaviour of aqueous graphene oxide suspensions. Tribology International, 2017, 116, 460-469.	5.9	49

#	Article	IF	CITATIONS
19	Oxide scales growth of low-carbon steel at high temperatures. Journal of Materials Processing Technology, 2004, 155-156, 1300-1306.	6.3	48
20	Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels. Corrosion Science, 2014, 82, 380-391.	6.6	48
21	Graphene encapsulated SiC nanoparticles as tribology-favoured nanofillers in aluminium composite. Composites Part B: Engineering, 2019, 162, 445-453.	12.0	46
22	High temperature oxide scale characteristics of low carbon steel in hot rolling. Journal of Materials Processing Technology, 2004, 155-156, 1307-1312.	6.3	45
23	Synthesis of highly-stretchable graphene – poly(glycerol sebacate) elastomeric nanocomposites piezoresistive sensors for human motion detection applications. Composites Science and Technology, 2018, 162, 14-22.	7.8	45
24	Analysis of oil-in-water based nanolubricants with varying mass fractions of oil and TiO 2 nanoparticles. Wear, 2018, 396-397, 162-171.	3.1	45
25	Processing, characterisation and electromechanical behaviour of elastomeric multiwall carbon nanotubes-poly (glycerol sebacate) nanocomposites for piezoresistive sensors applications. Composites Science and Technology, 2017, 142, 163-170.	7.8	44
26	An analysis of ridging of ferritic stainless steel 430. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 358-366.	5.6	43
27	Tailoring the wettability and mechanical properties of electrospun poly(l-lactic acid)-poly(glycerol) Tj ETQq $1\ 1$ 2017, 508, 87-94.	0.784314 rgB 9.4	BT /Overlock 43
28	Enhancing impact fracture toughness and tensile properties of a microalloyed cast steel by hot forging and post-forging heat treatment processes. Materials & Design, 2013, 47, 227-233.	5.1	42
29	Enhancing mechanical properties of a low-carbon microalloyed cast steel by controlled heat treatment. Materials Science & Dy Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 427-435.	5.6	41
30	Grain size effect of thickness/average grain size on mechanical behaviour, fracture mechanism and constitutive model for phosphor bronze foil. International Journal of Advanced Manufacturing Technology, 2015, 79, 1905-1914.	3.0	41
31	Oxide scale characterization of ferritic stainless steel and its deformation and friction in hot rolling. Tribology International, 2015, 84, 61-70.	5.9	41
32	Numerical analysis and experimental investigation into the effects of manufacturing errors on the running accuracy of the aerostatic porous spindle. Tribology International, 2018, 118, 20-36.	5.9	41
33	High temperature oxidation behaviour of ferritic stainless steel SUS 430 in humid air. Metals and Materials International, 2015, 21, 251-259.	3.4	40
34	Consensus Tracking of Data-Sampled Nonlinear Multi-Agent Systems With Packet Loss and Communication Delay. IEEE Transactions on Network Science and Engineering, 2021, 8, 126-137.	6.4	40
35	Surface characteristics of oxide scale in hot strip rolling. Journal of Materials Processing Technology, 2003, 140, 76-83.	6.3	39
36	Water-based nanosuspensions: Formulation, tribological property, lubrication mechanism, and applications. Journal of Manufacturing Processes, 2021, 71, 625-644.	5.9	39

#	Article	IF	Citations
37	Modeling and analysis of dry friction in micro-forming of metals. Tribology International, 2013, 57, 202-209.	5.9	38
38	Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles on the tribological behaviour of oxidised high-speed steel. Tribology International, 2017, 110, 77-85.	5.9	38
39	Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles in hot rolling of 304 stainless steel. Journal of Materials Processing Technology, 2018, 262, 149-156.	6.3	36
40	Effects of hydrogen on the hot deformation behaviour of Ti–6Al–4V alloy: Experimental and constitutive model studies. Journal of Alloys and Compounds, 2013, 574, 407-414.	5. 5	35
41	Effect of a grain-refined microalloyed steel substrate on the formation mechanism of a tight oxide scale. Corrosion Science, 2014, 85, 115-125.	6.6	32
42	Microstructure and hot deformation behaviour of high-carbon steel/low-carbon steel bimetal prepared by centrifugal composite casting. International Journal of Advanced Manufacturing Technology, 2016, 86, 817-827.	3.0	32
43	Effects of surface roughness on micro deep drawing of circular cups with consideration of size effects. Finite Elements in Analysis and Design, 2016, 111, 46-55.	3.2	32
44	Tribological Characteristics of Aqueous Graphene Oxide, Graphitic Carbon Nitride, and Their Mixed Suspensions. Tribology Letters, 2018, 66, 1.	2.6	32
45	Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear, 2019, 426-427, 792-804.	3.1	32
46	Simulation of crack healing in BCC Fe. Scripta Materialia, 2004, 51, 583-587.	5.2	30
47	In Situ synthesis of SiC-graphene core-shell nanoparticles using wet ball milling. Ceramics International, 2018, 44, 8283-8289.	4.8	30
48	Analysis of bending characteristics of bimetal steel composite. International Journal of Mechanical Sciences, 2018, 148, 272-283.	6.7	30
49	A Comprehensive Review of Water-Based Nanolubricants. Lubricants, 2021, 9, 89.	2.9	29
50	Modeling of the inlet zone in the mixed lubrication situation of cold strip rolling. Journal of Materials Processing Technology, 2003, 140, 569-575.	6.3	28
51	Analysis of the microstructure, texture and magnetic properties of strip casting 4.5wt.% Si non-oriented electrical steel. Materials and Design, 2015, 85, 455-460.	7. O	28
52	Wear and friction behaviour of high-speed steel and indefinite chill material for rolling ferritic stainless steels. Wear, 2017, 376-377, 1580-1585.	3.1	28
53	A design of a third-order CVC roll profile. Journal of Materials Processing Technology, 2002, 125-126, 645-648.	6.3	27
54	Tribological properties of magnetite precipitate from oxide scale in hot-rolled microalloyed steel. Wear, 2013, 302, 1286-1294.	3.1	27

#	Article	IF	CITATIONS
55	Research on the Improvement Effect of High Tension on Flatness Deviation in Cold Strip Rolling. Steel Research International, 2014, 85, 1560-1570.	1.8	27
56	Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu–7Cr–0.1Ag in situ composites. Journal of Alloys and Compounds, 2014, 612, 221-226.	5.5	27
57	Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel. Corrosion Science, 2015, 90, 140-152.	6.6	27
58	Influences of temperature and grain size on the material deformability in microforming process. International Journal of Material Forming, 2017, 10, 753-764.	2.0	27
59	Effects of rolling processes on ridging generation of ferritic stainless steel. Materials Characterization, 2018, 137, 201-211.	4.4	27
60	Understanding the role of water-based nanolubricants in micro flexible rolling of aluminium. Tribology International, 2020, 151, 106378.	5.9	27
61	Microstructural evolution of hybrid aluminum matrix composites reinforced with SiC nanoparticles and graphene/graphite prepared by powder metallurgy. Progress in Natural Science: Materials International, 2020, 30, 192-199.	4.4	27
62	Tribological behavior in micro–sheet hydroforming. Tribology International, 2016, 97, 302-312.	5.9	26
63	Performance Evaluation and Lubrication Mechanism of Water-Based Nanolubricants Containing Nano-TiO2 in Hot Steel Rolling. Lubricants, 2018, 6, 57.	2.9	26
64	Microstructure and tribological behaviour of alumina composites reinforced with SiC-graphene core-shell nanoparticles. Tribology International, 2019, 131, 94-101.	5.9	26
65	Machining characteristics and mechanism of GO/SiO2 nanoslurries in fixed abrasive lapping. Journal of Materials Processing Technology, 2020, 277, 116444.	6.3	26
66	Advances in Ladle Shroud as A Functional Device in Tundish Metallurgy: A Review. ISIJ International, 2019, 59, 1167-1177.	1.4	25
67	Admissibilisation of singular interval typeâ€⊋ Takagi–Sugeno fuzzy systems with time delay. IET Control Theory and Applications, 2020, 14, 1022-1032.	2.1	25
68	Effect of multi-walled carbon nanotubes on the cross-linking density of the poly(glycerol sebacate) elastomeric nanocomposites. Journal of Colloid and Interface Science, 2018, 521, 24-32.	9.4	24
69	Interfacial characteristics and mechanical properties of duplex stainless steel bimetal composite by heat treatment. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139513.	5.6	24
70	Novel water-based nanolubricant with superior tribological performance in hot steel rolling. International Journal of Extreme Manufacturing, 2020, 2, 025002.	12.7	24
71	The Application of Fungal Beta-glucans for the Treatment of Colon Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 725-730.	1.7	24
72	Influence of Nb, V and Ti on peak strain of deformed austenite in Mo-based micro-alloyed steels. Journal of Materials Processing Technology, 2002, 125-126, 72-76.	6.3	23

#	Article	IF	CITATIONS
73	Effect of initial crown on shape of hot rolled strip. Journal of Iron and Steel Research International, 2009, 16, 32-34.	2.8	23
74	Analysis of micro flexible rolling with consideration of material heterogeneity. International Journal of Mechanical Sciences, 2016, 105, 182-190.	6.7	23
75	Effects of Nano-TiO ₂ Additive in Oil-in-Water Lubricant on Contact Angle and Antiscratch Behavior. Tribology Transactions, 2017, 60, 362-372.	2.0	22
76	Analysis and characterisation of WC-10Co and AISI 4340 steel bimetal composite produced by powder–solid diffusion bonding. International Journal of Advanced Manufacturing Technology, 2019, 103, 3247-3263.	3.0	22
77	Analysis of flow behaviour and strain partitioning mechanism of bimetal composite under hot tensile conditions. International Journal of Mechanical Sciences, 2020, 169, 105317.	6.7	22
78	Analysis of premature failure of work rolls in a cold strip plant. Wear, 2007, 263, 1442-1446.	3.1	21
79	Multi-factor coupling system characteristic of the dynamic roll gap in the high-speed rolling mill during the unsteady lubrication process. Tribology International, 2013, 67, 174-181.	5.9	21
80	Effects of hydraulic pressure on wrinkling and earing in micro hydro deep drawing of SUS304 circular cups. International Journal of Advanced Manufacturing Technology, 2017, 90, 189-197.	3.0	21
81	Numerical and experimental investigation on the forming behaviour of stainless/carbon steel bimetal composite. International Journal of Advanced Manufacturing Technology, 2019, 101, 1075-1083.	3.0	21
82	Synergistic effects of TiC and graphene on the microstructure and tribological properties of Al2024 matrix composites. Advanced Powder Technology, 2021, 32, 3635-3649.	4.1	21
83	Thermal Stability and Properties of Deformation-Processed Cu-Fe In Situ Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2255-2261.	2.2	20
84	Influences of micro-friction on surface finish in micro deep drawing of SUS304 cups. Wear, 2017, 374-375, 36-45.	3.1	20
85	Study on edge cracking of copper foils in micro rolling. Materials Science & Diplication A: Structural Materials: Properties, Microstructure and Processing, 2019, 747, 53-62.	5.6	20
86	Modelling of Thin Strip Cold Rolling With Friction Variation by A 3-D Finite Element Method. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2003, 46, 218-223.	0.4	19
87	The role of oxide-scale microtexture on tribological behaviour in the nanoparticle lubrication of hot rolling. Tribology International, 2016, 93, 190-201.	5.9	19
88	Lubrication characterisation analysis of stainless steel foil during micro rolling. International Journal of Advanced Manufacturing Technology, 2016, 82, 65-73.	3.0	19
89	Study on growth behaviour of oxide scale and its effects on tribological property of nano-TiO 2 additive oil-in-water lubricant. Wear, 2017, 376-377, 792-802.	3.1	19
90	Analysis of surface roughness evolution of ferritic stainless steel using crystal plasticity finite element method. Journal of Materials Research and Technology, 2019, 8, 3175-3187.	5.8	19

#	ARTICLE Non-fragile guaranteed-performance <mml:math <="" th="" xmlns:mml="http://www.w3.org/1998/Math/Math/Math/ML"><th>IF</th><th>Citations</th></mml:math>	IF	Citations
91	display="inline" id="d1e218" altimg="si5.svg"> <mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>â^ž leader-following consensus of Lipschitz nonlinear multi-agent systems with switching topologies.</mml:mi></mml:mrow></mml:msub>	mml:n 3i5 <td>ml:mgrow></td>	ml:mgrow>
92	Effects of Rolling Force on Strip Shape during Tandem Cold Rolling Using a Novel Multistand Finite Element Model. Steel Research International, 2022, 93, 2100359.	1.8	19
93	Microstructure, mechanical and thermal properties of ultrafine-grained Al2024–TiC-GNPs nanocomposite. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2022, 841, 142855.	5.6	19
94	Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures. Metals and Materials International, 2016, 22, 474-487.	3.4	18
95	Analysis of laminated crack defect in the upsetting process of heavy disk-shaped forgings. Engineering Failure Analysis, 2016, 59, 197-210.	4.0	18
96	Quantification of texture-induced ridging in ferritic stainless steels 430 and 430LR during tensile deformation. Journal of Materials Research and Technology, 2019, 8, 2041-2051.	5.8	18
97	Effects of micro flexible rolling and annealing on microstructure, microhardness and texture of aluminium alloy. Materials Characterization, 2019, 148, 142-155.	4.4	18
98	Eco-Friendly Water-Based Nanolubricants for Industrial-Scale Hot Steel Rolling. Lubricants, 2020, 8, 96.	2.9	18
99	<mml:math <="" p="" xmlns:mml="http://www.w3.org/1998/Math/MathML"> altimg="si11.svg"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow> delayed tracking protocol design of nonlinear singular multi-agent systems under Markovian switching topology, Information Sciences, 2021, 545, 280-297.</mml:mrow></mml:msub></mml:mrow></mml:math>	cmml:mi>â^ž	
100	Texture, microstructure and microhardness evolution of a hot-rolled high chromium cast iron. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6251-6254.	5.6	17
101	Optimisation of Size-controllable Centroidal Voronoi Tessellation for FEM Simulation of Micro Forming Processes. Procedia Engineering, 2014, 81, 2409-2414.	1.2	17
102	Effect of Heat Treatment on the Microstructure and Properties of Deformation-Processed Cu-7Cr In Situ Composites. Journal of Materials Engineering and Performance, 2015, 24, 4340-4345.	2.5	17
103	Effects of grain boundaries in oxide scale on tribological properties of nanoparticles lubrication. Wear, 2015, 332-333, 1286-1292.	3.1	17
104	Experimental and numerical study on micro deep drawing with aluminium-copper composite material. Procedia Engineering, 2017, 207, 1051-1056.	1.2	17
105	Transformation Behavior of Bainite during Two-step Isothermal Process in an Ultrafine Bainite Steel. ISIJ International, 2018, 58, 1875-1882.	1.4	17
106	Transformation Behavior and Properties of Carbideâ€Free Bainite Steels with Different Si Contents. Steel Research International, 2019, 90, 1800474.	1.8	17
107	Influence of hot compressive parameters on flow behaviour and microstructure evolution in a commercial medium carbon micro-alloyed spring steel. Journal of Manufacturing Processes, 2020, 58, 1171-1181.	5.9	17
108	Shear-Out Capacity of Bolted Connections in Cold-Reduced Steel Sheets. Journal of Structural Engineering, 2020, 146, .	3.4	17

#	Article	lF	Citations
109	A novel ultrahigh-speed ball-on-disc tribometer. Tribology International, 2021, 157, 106901.	5.9	17
110	The Effect of Immersion Corrosion Time on Electrochemical Corrosion Behavior and the Corrosion Mechanism of EH47 Ship Steel in Seawater. Metals, 2021, 11, 1317.	2.3	17
111	Effects of tungsten addition and heat treatment conditions on microstructure and mechanical properties of microalloyed forging steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 144-151.	5.6	16
112	Influence of Cr-Rich Oxide Scale on Sliding Wear Mechanism of Ferritic Stainless Steel at High Temperature. Tribology Letters, 2016, 63, 1.	2.6	16
113	In-Situ Observation of Martensitic Transformation in a Fe–C–Mn–Si Bainitic Steel During Austempering. Metals and Materials International, 2020, 26, 961-972.	3.4	16
114	Hot deformation behaviour and interfacial characteristics of bimetal composite at elevated temperatures. Intermetallics, 2020, 125, 106893.	3.9	16
115	Roughness-dependent tribological characteristics of water-based GO suspensions with ZrO2 and TiO2 nanoparticles as additives. Tribology International, 2021, 161, 107073.	5.9	16
116	Analysis of Microstructure Effects on Edge Crack of Thin Strip During Cold Rolling. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 1244-1252.	2.1	15
117	Finite Element Method Analysis of Micro Cross Wedge Rolling of Metals. Procedia Engineering, 2014, 81, 2463-2468.	1.2	15
118	Effect of Extreme Pressure Additives on the Deformation Behavior of Oxide Scale during the Hot Rolling of Ferritic Stainless Steel Strips. Tribology Transactions, 2015, 58, 947-954.	2.0	15
119	Investigation of oxide scale on ferritic stainless steel B445J1M and its tribological effect in hot rolling. Wear, 2015, 338-339, 178-188.	3.1	15
120	Effect of extreme pressure agents on the anti-scratch behaviour of high-speed steel material. Tribology International, 2015, 81, 19-28.	5.9	15
121	A Comparative Study of Fluid Flow and Mass Transfer in a Trumpet-Shaped Ladle Shroud Using Large Eddy Simulation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 495-507.	2.1	15
122	Effect of Ni Addition on Bainite Transformation and Properties in a 2000ÂMPa Grade Ultrahigh Strength Bainitic Steel. Metals and Materials International, 2018, 24, 1202-1212.	3.4	15
123	Analysis of sintering and bonding of ultrafine WC powder and stainless steel by hot compaction diffusion bonding. Fusion Engineering and Design, 2018, 133, 39-50.	1.9	15
124	Effects of nano-particle lubrication on micro deep drawing of Mg-Li alloy. International Journal of Advanced Manufacturing Technology, 2019, 104, 4409-4419.	3.0	15
125	Effect of austenisation temperature on bainite transformation below martensite starting temperature. Materials Science and Technology, 2019, 35, 1539-1550.	1.6	15
126	Effects of tungsten on continuous cooling transformation characteristics of microalloyed steels. Materials & Design, 2013, 49, 252-258.	5.1	14

#	Article	IF	Citations
127	Study on springback in micro V-bending with consideration of grain heterogeneity. International Journal of Advanced Manufacturing Technology, 2015, 78, 1075-1085.	3.0	14
128	Interface analysis and hot deformation behaviour of a novel laminated composite with high-Cr cast iron and low carbon steel prepared by hot compression bonding. Journal of Iron and Steel Research International, 2015, 22, 438-445.	2.8	14
129	Developing a self-piercing riveting with flange pipe rivet joining aluminum sheets. International Journal of Advanced Manufacturing Technology, 2017, 91, 2315-2328.	3.0	14
130	Study of micro flexible rolling based on grained inhomogeneity. International Journal of Mechanical Sciences, 2017, 123, 324-339.	6.7	14
131	Adhesion, friction and wear analysis of a chromium oxide scale on a ferritic stainless steel. Wear, 2019, 426-427, 1212-1221.	3.1	14
132	Effect of Temperature and Strain Rate on the Hot Deformation Behaviour of Ferritic Stainless Steel. Metals and Materials International, 2020, 26, 248-259.	3.4	14
133	Fabrication of TiC-graphene dual-reinforced self-lubricating Al matrix hybrid nanocomposites with superior mechanical and tribological properties. Tribology International, 2022, 171, 107535.	5.9	14
134	Crystal Plasticity Finite Modelling of 3D Surface Asperity Flattening in Uniaxial Planar Compression. Tribology Letters, 2012, 46, 101-112.	2.6	13
135	Hydrogen-induced hardening of Ti–6Al–4V alloy in β phase field. Materials & Design, 2014, 54, 967-972.	5.1	13
136	Effect of thermomechanical treatment on sliding wear of high-Cr cast iron with large plastic deformation. Tribology International, 2015, 92, 117-125.	5.9	13
137	Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet. Journal of Magnetism and Magnetic Materials, 2017, 424, 64-68.	2.3	13
138	Effects of Holding Time on the Sintering of Cemented Tungsten Carbide Powder and Bonding with High-Strength Steel Wire. Journal of Materials Engineering and Performance, 2019, 28, 4074-4085.	2.5	13
139	Effects of Ni and Cr on Cryogenic Impact Toughness of Bainite/Martensite Multiphase Steels. Metals and Materials International, 2019, 25, 1151-1160.	3.4	13
140	Characteristic flow behaviour prediction and microstructure analysis of a commercial Si–Cr micro-alloyed spring steel under isothermal compression. Vacuum, 2021, 186, 110066.	3.5	13
141	Deformation of oxide scale and surface roughness transfer during hot rolling of stainless steel 304L. International Journal of Surface Science and Engineering, 2009, 3, 459.	0.4	12
142	Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Microalloyed Forging Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3511-3523.	2.2	12
143	Modelling of the evolution of crack of nanoscale in iron. Computational Materials Science, 2013, 69, 270-277.	3.0	12
144	An experimental and numerical study of micro deep drawing of SUS304 circular cups. Manufacturing Review, 2015, 2, 27.	1.5	12

#	Article	IF	CITATIONS
145	Local strain analysis of the tertiary oxide scale formed on a hot-rolled steel strip via EBSD. Surface and Coatings Technology, 2015, 277, 151-159.	4.8	12
146	Numerical analysis of the dynamic performance of aerostatic thrust bearings with different restrictors. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233, 406-423.	1.8	12
147	Experimental Investigation on Micro Deep Drawing of Stainless Steel Foils with Different Microstructural Characteristics. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	3.7	12
148	Reachable Set Estimation for Markovian Jump Neutral-Type Neural Networks With Time-Varying Delays. IEEE Transactions on Cybernetics, 2022, 52, 1150-1163.	9.5	12
149	Surface asperity evolution and microstructure analysis of Al 6061T5 alloy in a quasi-static cold uniaxial planar compression (CUPC). Applied Surface Science, 2015, 347, 193-201.	6.1	11
150	Analysis of {411}<148> recrystallisation texture in twin-roll strip casting of 4.5 wt% Si non-oriented electrical steel. Materials Letters, 2016, 180, 63-67.	2.6	11
151	Superomniphilic Poly(glycerol sebacate)–Poly(<scp>l</scp> â€lactic acid) Electrospun Membranes for Oil Spill Remediation. Advanced Materials Interfaces, 2017, 4, 1700484.	3.7	11
152	Study on Deformation Characteristics and Microstructure Evolution of 2205/AH36 Bimetal Composite in a Novel Hot Forming Process. Metals, 2020, 10, 1375.	2.3	11
153	Influence of blank holder-die gap on micro-deep drawing of SUS304 cups. International Journal of Mechanical Sciences, 2021, 191, 106065.	6.7	11
154	Deformation mechanism and texture evolution of a low-Ni Cr–Mn–N austenitic stainless steel under bending deformation. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140724.	5.6	11
155	Dissipativity-Based Consensus Tracking of Singular Multiagent Systems With Switching Topologies and Communication Delays. IEEE Transactions on Cybernetics, 2022, 52, 4547-4558.	9.5	11
156	Investigation of compact tensile and fracture mechanical properties of a duplex stainless steel bimetal composite with the interfacial zone. Journal of Materials Research and Technology, 2022, 19, 809-820.	5.8	11
157	Thermal, Microstructural and Mechanical Coupling Analysis Model for Flatness Change Prediction During Run-Out Table Cooling in Hot Strip Rolling. Journal of Iron and Steel Research International, 2012, 19, 43-51.	2.8	10
158	Crystallographic Texture Based Analysis of Fe _{J<i>α</i>-Fe₂O_{4_{J<i>Fe₂O_{Scale Formed on a Hot-rolled Microalloyed Steel. ISIJ International, 2015, 55, 278-284.}</i>}}}	.gt; 8.& lt;/sı	ıb& ıg t;
159	Crystal plasticity finite element modelling of the effect of friction on surface asperity flattening in cold uniaxial planar compression. Applied Surface Science, 2015, 359, 236-244.	6.1	10
160	A switch-like magnetoresistance of ferromagnetic Ni–Mn–Ga ribbon during martensitic transformation. Materials Letters, 2015, 160, 428-431.	2.6	10
161	Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects. Frontiers of Mechanical Engineering, 2018, 13, 66-73.	4.3	10
162	Analysis of surface roughness alteration in micro flexible rolling. Wear, 2019, 426-427, 1286-1295.	3.1	10

#	Article	IF	Citations
163	Numerical analysis of the strip crown inheritance in tandem cold rolling by a novel 3D multi-stand FE model. International Journal of Advanced Manufacturing Technology, 2022, 120, 3683-3704.	3.0	10
164	Effects of holding time on interface microstructure and element diffusion of WC-Co-Ni/stainless steel composites. International Journal of Refractory Metals and Hard Materials, 2022, 108, 105951.	3.8	10
165	Microtexture based analysis of surface asperity flattening behavior of annealed aluminum alloy in uniaxial planar compression. Tribology International, 2013, 66, 282-288.	5.9	9
166	A Comparison of Hot Deformation Behavior of High r White Cast Iron and High r White Cast Iron/Low Carbon Steel Laminate. Steel Research International, 2016, 87, 780-788.	1.8	9
167	Mathematical modelling of fluid flow inside trumpet-shaped ladle shrouds. Ironmaking and Steelmaking, 2017, 44, 732-738.	2.1	9
168	Effects of surface preparation on tribological behaviour of a ferritic stainless steel in hot rolling. Wear, 2017, 376-377, 1804-1813.	3.1	9
169	Intelligent Shape Regulation Cooperative Model of Cold Rolling Strip and Its Application. Steel Research International, 2017, 88, 1600383.	1.8	9
170	Simulations of hydro-mechanical deep drawing using Voronoi model and real microstructure model. Procedia Engineering, 2017, 207, 1033-1038.	1.2	9
171	Comprehensive Analysis of the Effect of Ausforming on the Martensite Start Temperature in a Fe-C-Mn-Si Medium-Carbon High-Strength Bainite Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4541-4549.	2.2	9
172	Oxidation Behaviour of Steel During hot Rolling by Using TiO2-Containing Water-Based Nanolubricant. Oxidation of Metals, 2019, 92, 315-335.	2.1	9
173	Effect of Particle Size on Microstructure and Element Diffusion at the Interface of Tungsten Carbide/High Strength Steel Composites. Materials, 2019, 12, 4164.	2.9	9
174	Admissibility and Admissibilization of Singular Polynomial Fuzzy Systems with Time-Varying Delay. International Journal of Fuzzy Systems, 2021, 23, 81-93.	4.0	9
175	Microstructure and texture evolution of cold-rolled low-Ni Cr–Mn–N austenitic stainless steel during bending. Journal of Materials Science, 2021, 56, 6465-6486.	3.7	9
176	Novel three-dimensional multi-objective numerical modeling for hot strip tandem rolling. International Journal of Material Forming, 2021, 14, 989-1004.	2.0	9
177	A study of influence of hydraulic pressure on micro-hydromechanical deep drawing considering size effects and surface roughness. Wear, 2021, 477, 203803.	3.1	9
178	Study on the Tribological Behaviour of Nanolubricants during Micro Rolling of Copper Foils. Materials, 2022, 15, 2600.	2.9	9
179	Modeling uniaxial tensile deformation of polycrystalline Al using CPFEM. International Journal of Minerals, Metallurgy, and Materials, 2008, 15, 43-47.	0.2	8
180	Deformation Characterization of Micro Rolling for Stainless Steel Foil. Procedia Engineering, 2014, 81, 179-184.	1.2	8

#	Article	IF	Citations
181	Effects of Hydrogen on the Critical Conditions for Dynamic Recrystallization of Titanium Alloy During Hot Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4932-4945.	2.2	8
182	Effect of Mesh on Springback in 3D Finite Element Analysis of Flexible Microrolling. Journal of Applied Mathematics, 2015, 2015, 1-7.	0.9	8
183	Finite element method analysis of surface roughness transfer in micro flexible rolling. MATEC Web of Conferences, 2016, 80, 04002.	0.2	8
184	Large magnetoresistance in highly textured Mn _{44.7} Ni _{43.5} Sn _{11.8} melt spun ribbons. Smart Materials and Structures, 2016, 25, 055031.	3.5	8
185	Tribological Testing of Metallurgical Coke: Coefficient of Friction and Relation to Coal Properties. Energy & E	5.1	8
186	Influences of Load and Microstructure on Tribocorrosion Behaviour of High Strength Hull Steel in Saline Solution. Tribology Letters, 2019, 67, 1.	2.6	8
187	Effects of cold rolling and annealing on the ridging behaviour of ferritic stainless steel. International Journal of Advanced Manufacturing Technology, 2020, 107, 4823-4836.	3.0	8
188	Revealing the recrystallization behavior of an excellent strip casting 4.5Âwt% Si non-oriented electrical steel. Materials Characterization, 2020, 163, 110310.	4.4	8
189	Mg alloy surface immobilised with caerin peptides acquires enhanced antibacterial ability and putatively improved corrosion resistance. Materials Science and Engineering C, 2021, 121, 111819.	7.3	8
190	Effects of magnetic field and hydrostatic pressure on the antiferromagneticâ€"ferromagnetic transition and magneto-functional properties in Hf1-xTaxFe2 alloys. Tungsten, 2023, 5, 503-511.	4.8	8
191	Influence of intermediate roll shifting on strip shape in a CVC-6 tandem cold mill based on a 3D multi-stand FE model. International Journal of Advanced Manufacturing Technology, 2022, 121, 4367-4385.	3.0	8
192	Allowable variation of cold-rolled strip transverse profiles in high tension. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 608-616.	4.9	7
193	Formability of Micro Sheet Hydroforming of Ultra-fine Grained Stainless Steel. Procedia Engineering, 2014, 81, 1463-1468.	1.2	7
194	A Comparison of Texture Development in an Experimental and Industrial Tertiary Oxide Scale in a Hot Strip Mill. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 2503-2513.	2.1	7
195	Dependence of texture development on the grain size of tertiary oxide scales formed on a microalloyed steel. Surface and Coatings Technology, 2015, 272, 39-49.	4.8	7
196	Experimental and Numerical Study on the Effect of ZDDP Films on Sticking During Hot Rolling of Ferritic Stainless Steel Strip. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5195-5202.	2.2	7
197	Micro extrusion of ultrafine grained titanium prepared by ECAP. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 437-443.	1.0	7
198	Effects of oil-in-water based nanolubricant containing TiO 2 nanoparticles in hot rolling of 304 stainless steel. Procedia Engineering, 2017, 207, 1385-1390.	1.2	7

#	Article	IF	CITATIONS
199	Evaluation and optimisation of micro flexible rolling process parameters by orthogonal trial design. International Journal of Advanced Manufacturing Technology, 2018, 95, 143-156.	3.0	7
200	Micro forming of metallic composites. Procedia Manufacturing, 2018, 15, 1429-1436.	1.9	7
201	Estimating coke fracture toughness using acoustic emissions and changes in coefficient of friction during scratch testing. Fuel, 2018, 226, 564-572.	6.4	7
202	Comparison of Multiphase Flow in a Continuous Casting Tundish Using Two Types of Industrialized Ladle Shrouds. Jom, 2018, 70, 2886-2892.	1.9	7
203	Experimental investigation on the mechanical and tribological coupled behaviour of bimetal composite under different states. Surface Topography: Metrology and Properties, 2019, 7, 025015.	1.6	7
204	Numerical and experimental studies on wrinkling control methods of sheet metal part with high curvature and large flange in rubber forming. Advances in Mechanical Engineering, 2019, 11, 168781401988378.	1.6	7
205	A Calculation Method to Investigate the Effects of Geometric Parameters and Operational Conditions on the Static Characteristics of Aerostatic Spherical Bearings. Journal of Tribology, 2019, 141, .	1.9	7
206	Microstructure and mechanical properties of thin varying thickness strips with different transition zones produced by micro flexible rolling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233, 1954-1967.	2.4	7
207	Reachable set estimation for neutral Markovian jump systems with modeâ€dependent timeâ€varying delays. Optimal Control Applications and Methods, 2021, 42, 195-215.	2.1	7
208	Finite element analysis of roll bit behaviors in cold foil rolling process. AIP Conference Proceedings, 2013, , .	0.4	6
209	Development of Servo-Type Micro-Hydromechanical Deep-Drawing Apparatus and Micro Deep-Drawing Experiments of Circular Cups. Journal of the Japan Society for Technology of Plasticity, 2014, 55, 44-49.	0.3	6
210	Numerical Study on Springback with Size Effect in Micro V-bending. Procedia Engineering, 2014, 81, 1011-1016.	1.2	6
211	The effects of vacuum annealing temperatures on the microstructure, mechanical properties and electrical resistivity of Mg–3Al–1Zn alloy ribbons. Vacuum, 2015, 115, 80-84.	3.5	6
212	Analysis of thin strip profile by work roll crossing and shifting in asymmetrical cold rolling. International Journal of Modern Physics B, 2015, 29, 1540032.	2.0	6
213	Cu-7Cr-0.1Ag Microcomposites Optimized for High Strength and High Condutivity. Journal of Materials Engineering and Performance, 2018, 27, 933-938.	2.5	6
214	Effects of microrolling parameters on the microstructure and deformation behavior of pure copper. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 45-52.	4.9	6
215	High precision recognition and adjustment of complicated shape details in fine cold rolling process of ultra-thin wide strip. Journal of Manufacturing Processes, 2018, 35, 508-516.	5.9	6
216	A theoretical and experimental study on the stiffness of aerostatic thrust bearings with vacuum preloading. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233, 256-270.	1.8	6

#	Article	IF	Citations
217	Effects of sintering temperature on interface microstructure and element diffusion of WC-Co-Ni-Fe/high-speed steel composites. Materials Letters, 2022, 310, 131449.	2.6	6
218	Mechanics of Thin Strip Steering in Hot Rolling. AIP Conference Proceedings, 2004, , .	0.4	5
219	Modeling texture development during cold rolling of IF steel by crystal plasticity finite element method. International Journal of Minerals, Metallurgy, and Materials, 2008, 15, 696-701.	0.2	5
220	Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements. Frontiers of Mechanical Engineering in China, 2010, 5, 52-60.	0.4	5
221	Size effects in micro rolling of metals. IOP Conference Series: Materials Science and Engineering, 2017, 282, 012013.	0.6	5
222	Analysis of transient heat source and coupling temperature field during cold strip rolling. International Journal of Advanced Manufacturing Technology, 2018, 95, 835-846.	3.0	5
223	The Effect of a Dissipative Ladle Shroud on Mixing in Tundish: Mathematical and Experimental Modelling. High Temperature Materials and Processes, 2018, 37, 25-32.	1.4	5
224	Microstructural evaluation of WC and steel dissimilar bilayered composite obtained by spark plasma sintering. International Journal of Advanced Manufacturing Technology, 2020, 111, 2405-2418.	3.0	5
225	Improving Thin Strip Profile Using Work Roll Cross and Work Roll Shifting Methods in Cold Strip Rolling. International Journal of Metals, 2017, 2017, 1-10.	0.3	5
226	Frictional Size Effect of Light-Weight Mg–Li Alloy in Micro Deep Drawing under Nano-Particle Lubrication Condition. Materials Transactions, 2020, 61, 239-243.	1.2	5
227	A Simulation of Surface Roughness in Hot Strip Rolling. AIP Conference Proceedings, 2004, , .	0.4	4
228	EFFECT OF ASYMMETRICAL STAND STIFFNESS ON HOT ROLLED STRIP SHAPE. International Journal of Modern Physics B, 2008, 22, 5734-5739.	2.0	4
229	Microstructure and adherence of vitreous enamel to low carbon steel. International Journal of Surface Science and Engineering, 2011, 5, 369.	0.4	4
230	Effects of oxide scale on hot rolling of an austenitic stainless steel. International Journal of Surface Science and Engineering, 2014, 8, 173.	0.4	4
231	Surface Morphology of Micro Stepped Components in Micro Cross Wedge Rolling. Procedia Engineering, 2014, 81, 1902-1908.	1.2	4
232	Influence of Friction on Surface Asperity Flattening Process in Cold Uniaxial Planar Compression (CUPC). Tribology Letters, 2014, 53, 383-393.	2.6	4
233	Analysis of Fishscaling Resistance of Low Carbon Heavy Plate Steels. Journal of Iron and Steel Research International, 2014, 21, 469-475.	2.8	4
234	Computational and Experimental Study on the Critical Unstable Shape of Coldâ€Rolled Strip. Steel Research International, 2016, 87, 691-698.	1.8	4

#	Article	IF	CITATIONS
235	Application of Finite Element Analysis in Multiscale Metal Forming Process. , 0, , .		4
236	Recent Development in Micromanufacturing of Metallic Materials. Materials, 2020, 13, 4046.	2.9	4
237	Design of a novel austenitising bending process in forming characteristics of high-strength quenched and micro-alloyed steel: Experiment and simulation. Materials and Design, 2022, 215, 110458.	7.0	4
238	Ex situ analysis of high-strength quenched and micro-alloyed steel during austenitising bending process: numerical simulation and experimental investigation. International Journal of Advanced Manufacturing Technology, 0, , 1.	3.0	4
239	Adhesion at oxide layer/substrate interface during sliding wear. International Journal of Surface Science and Engineering, 2012, 6, 270.	0.4	3
240	Wear Behavior of (TiB2–TiC)–Ni/TiAl/Ti Gradient Materials Prepared by the FAPAS Process. Tribology Letters, 2013, 49, 313-322.	2.6	3
241	Analysis of Axisymmetric Cup Forming of Metal Foil and Micro Hydroforming Process. , 2013, , .		3
242	High Temperature Oxidation of Indefinite Chill Roll Material Under Dry and Humid Atmospheres. Steel Research International, 2016, 87, 349-358.	1.8	3
243	Reprint of â€~â€~Influences of micro-friction on surface finish in micro deep drawing of SUS304 cups''. Wear, 2017, 376-377, 1147-1155.	3.1	3
244	Analysis of oxide scale deformation and surface roughness characterisation in hot rolling of stainless steels. International Journal of Surface Science and Engineering, 2017, 11, 241.	0.4	3
245	A new constitutive analysis of hexagonal close-packed metal in equal channel angular pressing by crystal plasticity finite element method. Continuum Mechanics and Thermodynamics, 2018, 30, 69-82.	2.2	3
246	Analysis of contact mechanics in micro flexible rolling. Procedia Manufacturing, 2018, 15, 1467-1474.	1.9	3
247	Periodic Topology Optimization of a Stacker Crane. IEEE Access, 2019, 7, 186553-186562.	4.2	3
248	Finite Element Analysis of Forward Slip in Micro Flexible Rolling of Thin Aluminium Strips. Metals, 2019, 9, 1062.	2.3	3
249	Giant Magnetoresistance and Magnetocaloric Effect in Highly Textured Ni 45 Mn 36.5 In 13.5 Co 5 Alloys. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000381.	1.8	3
250	Study of Wire Deformation Characterization and Size Effects during the Micro-Flat-Rolling Process. Metals, 2020, 10, 405.	2.3	3
251	Optimisation of sintering parameters for bonding nanocrystalline cemented tungsten carbide powder and solid high strength steel. Composite Interfaces, 2021, 28, 477-492.	2.3	3
252	Hot Deformation Behavior and Microstructure Evolution of Fe–5Mn–3Al–0.1C High-Strength Lightweight Steel for Automobiles. Materials, 2021, 14, 2478.	2.9	3

#	Article	IF	CITATIONS
253	Analysis of Multi-Layer Sandwich Structures by Finite Element Method. Advanced Science Letters, 2011, 4, 3243-3248.	0.2	3
254	Analysis of Temperature Field in Liquid-Solid Bimetal Casting of Laminated Metal Composite. Advanced Science Letters, 2012, 15, 48-52.	0.2	3
255	Yielding behavior and strengthening mechanisms of a high strength ultrafineâ€grained Crâ€Mnâ€Niâ€N stainless steel. Steel Research International, 0, , 2100524.	1.8	3
256	Effects of strain rate on the microstructure and texture evolution of a TRIP-TWIP metastable austenitic stainless steel during bending. Journal of Materials Science, 2022, 57, 3727-3745.	3.7	3
257	Mechanical and Electrical Properties of Y-containing Al-Zr Heat-resistant Alloy Produced by Dynamic ECAE Process. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 123-129.	1.0	3
258	The Wet–Dry Cycling Corrosion Behavior of Low-Carbon Medium Manganese Steel Exposed to a 3.5% NaCl Solution Environment. Journal of Materials Engineering and Performance, 2022, 31, 7856-7869.	2.5	3
259	Effects of Quenching and Tempering Heat Treatment Processing on the Microstructure and Properties of High-Strength Hull Steel. Metals, 2022, 12, 914.	2.3	3
260	Experimental and numerical study of micro deep drawing. MATEC Web of Conferences, 2015, 21, 09003.	0.2	2
261	A new micro scale FE model of crystalline materials in micro forming process. MATEC Web of Conferences, 2016, 80, 02002.	0.2	2
262	Effect of Grain Size on Springback and System Energy in Micro V-Bending with Phosphor Bronze Foil. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 488-493.	2.2	2
263	Analysis of surface asperity flattening based on two different methods. Continuum Mechanics and Thermodynamics, 2016, 28, 1623-1634.	2.2	2
264	Analysis of 13Cr bloom solidification structure using CA-FE model. Journal of Central South University, 2016, 23, 10-17.	3.0	2
265	Fundamentals of Microforming. , 2017, , 3-27.		2
266	Effect of annealing on microstructure and hardness of thin aluminium strips fabricated by micro flexible rolling. MATEC Web of Conferences, 2018, 190, 11001.	0.2	2
267	Influence of hotÂrolling on microstructure and mechanical characteristics of explosive-welded FSS/CS laminate. Journal of Iron and Steel Research International, 2018, 25, 572-579.	2.8	2
268	Three-directional contact force model for the ball spinning of a thin-walled tube. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2019, 233, 500-507.	2.5	2
269	Comparison of a laboratory-scale coke and a pilot-scale coke from matched coal. Ironmaking and Steelmaking, 2021, 48, 514-526.	2.1	2
270	Effect of Ni on the Microstructure and Diffusion Behavior at the Interface of WC/High-Speed Steel Composites. Metals, 2021, 11, 341.	2.3	2

#	Article	IF	Citations
271	Fabrication of a Composite Material of Highâ€Chromium Cast Iron Dispersed in Lowâ€Carbon Steel by Hotâ€Rolling Process. Steel Research International, 2021, 92, 2100001.	1.8	2
272	Study on micro hydro-mechanical deep drawing using finite element method. MATEC Web of Conferences, 2016, 80, 02009.	0.2	2
273	Modelling of Temperature-Dependent Growth Kinetics of Oxide Scale on Hot-Rolled Steel Strip. Advanced Science Letters, 2012, 13, 219-223.	0.2	2
274	Lubrication and Wear in Rolling., 2017,, 748-767.		2
275	Experimental study on drawability of aluminium-copper composite in micro deep drawing. Journal of Materials Processing Technology, 2022, 307, 117662.	6.3	2
276	Numerical simulation of slab edging process by the Reproducing Kernel Particle Method considering friction effect. International Journal of Surface Science and Engineering, 2009, 3, 482.	0.4	1
277	Finite element modelling of surface roughness transfer and oxide scale micro deformation in metal manufacturing process., 2013,,.		1
278	Study on Surface Asperity Flattening in Cold Quasi-Static Uniaxial Planar Compression by Crystal Plasticity Finite Element Method. Tribology Letters, 2015, 58, 1.	2.6	1
279	Simulation of Micro Flexible Rolling. , 2017, , 155-185.		1
280	Size Effects in Microforming. , 2017, , 29-50.		1
281	Practice of Micro Deep Drawing. , 2017, , 369-390.		1
282	Practice of Micro Flexible Rolling., 2017,, 325-346.		1
283	Analysis of Springback Behaviour in Micro Flexible Rolling of Crystalline Materials. Advances in Materials Science and Engineering, 2018, 2018, 1-14.	1.8	1
284	Plasticity Improvement of Ball-Spun Magnesium Alloy Tube Based on Stress Triaxiality. Advances in Materials Science and Engineering, 2018, 2018, 1-12.	1.8	1
285	Simulation and Implementation of AGC on Hille 100 Experimental Rolling Mill. Advanced Science Letters, 2011, 4, 1717-1723.	0.2	1
286	Analysis of High-Cr Cast Iron/Low Carbon Steel Wear-resistant Laminated Composite Plate Prepared by Hot-rolled Symmetrical Billet. CMES - Computer Modeling in Engineering and Sciences, 2018, 117, 109-123.	1.1	1
287	Experimental Study and FEM Analysis of Dynamic Response in Metals during Plate Impact. AIP Conference Proceedings, 2004, , .	0.4	0
288	A Method to Analyse Mechanics of Work Roll Edge Contact Rolling of Thin Strip. AIP Conference Proceedings, 2004, , .	0.4	0

#	Article	IF	CITATIONS
289	Research and Application of Dynamic Shape Control Strategy for Cold Rolled Wide Strip., 2009,,.		O
290	Tribological features of roll surface in cold metal rolling. International Journal of Surface Science and Engineering, 2009, 3, 407.	0.4	0
291	IMPLEMENTATION AND APPLICATION OF A REAL-TIME CONTROL SYSTEM USING MATLAB/xPC. , 2011, , .		O
292	Study on bending conditions of plate in coil box. Journal of Shanghai Jiaotong University (Science), 2011, 16, 324-328.	0.9	0
293	Study on the effects of polycrystal grain orientations on indentation hardness. International Journal of Surface Science and Engineering, 2012, 6, 338.	0.4	0
294	Potential of fluid pressure use for achieving high formability in micro sheet forming process., 2014,,.		O
295	Study of micro hydromechanical deep drawing of SUS304 circular cups by an ALE model. Procedia Engineering, 2017, 207, 1039-1044.	1.2	0
296	Simulation of Micro Ultrathin Strip Rolling. , 2017, , 187-214.		O
297	Practice of Micro Hydromechanical Deep Drawing. , 2017, , 391-416.		0
298	Simulation of Micro Deep Drawing. , 2017, , 215-239.		0
299	Effect of Lþders Bands by Strain Ageing on Strain Distribution, Microstructure and Texture Evolution of High-Strength Pipe Steel. Acta Metallurgica Sinica (English Letters), 2021, 34, 657-667.	2.9	O
300	Analysis of the multiphase lubricating oil effect on the performance of the tilting-pad journal bearing. Thermal Science, 2021, 25, 2245-2252.	1.1	O
301	Analysis of the multiphase lubricating oil effect on the performance of the tilting-pad journal bearing. Thermal Science, 2021, , 92-92.	1.1	O
302	Effect of Different Rotational Speeds on Graphene-Wrapped SiC Core-Shell Nanoparticles in Wet Milling Medium. Materials, 2021, 14, 944.	2.9	0
303	EFFECT OF ASYMMETRICAL STAND STIFFNESS ON HOT ROLLED STRIP SHAPE., 2009,,.		O
304	Design and Experiments on a New Seawater Hydraulic Wirerope Cutter for Underwater Application. Advanced Science Letters, 2011, 4, 2251-2255.	0.2	0
305	Solidification During Vertical Twin-Roll Casting of Magnesium Alloy. Advanced Science Letters, 2012, 14, 101-105.	0.2	0
306	Simulation of Micro Cross Wedge Rolling. , 2017, , 131-153.		0

ZHENG-YI JIANG

#	Article	IF	CITATIONS
307	Practice of Micro Ultrathin Strip Rolling. , 2017, , 347-368.		0
308	The Effect of Hysteresis Loss on Magnetic Entropy Change in Highly Textured Mn-Niâ \in "Sn Melt-Spun Ribbons. Journal of Superconductivity and Novel Magnetism, 0, , 1.	1.8	0
309	Degradation of differently processed Mg-based implants leads to distinct foreign body reactions (FBRs) through dissimilar signaling pathways. Journal of Magnesium and Alloys, 2023, 11, 2106-2124.	11.9	0