
Benjamin J Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761659/publications.pdf Version: 2024-02-01

RENIAMIN L PORINSON

#	Article	IF	CITATIONS
1	The Polymerization of Homogentisic Acid In Vitro as a Model for Pyomelanin Formation. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	4
2	Thermoelectric properties of organic thin films enhanced by π–π stacking. JPhys Energy, 2022, 4, 024002.	5.3	6
3	Multi-component self-assembled molecular-electronic films: towards new high-performance thermoelectric systems. Chemical Science, 2022, 13, 5176-5185.	7.4	14
4	Assembly, structure and thermoelectric properties of 1,1′-dialkynylferrocene â€~hinges'. Chemical Science, 2022, 13, 8380-8387.	7.4	8
5	Optimised power harvesting by controlling the pressure applied to molecular junctions. Chemical Science, 2021, 12, 5230-5235.	7.4	18
6	Quantifying thermal transport in buried semiconductor nanostructures via cross-sectional scanning thermal microscopy. Nanoscale, 2021, 13, 10829-10836.	5.6	12
7	High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene. Nature Communications, 2021, 12, 4307.	12.8	2
8	Carbazoleâ€Based Tetrapodal Anchor Groups for Gold Surfaces: Synthesis and Conductance Properties. Angewandte Chemie, 2020, 132, 892-899.	2.0	6
9	Carbazoleâ€Based Tetrapodal Anchor Groups for Gold Surfaces: Synthesis and Conductance Properties. Angewandte Chemie - International Edition, 2020, 59, 882-889.	13.8	22
10	Molecular-scale thermoelectricity: as simple as â€~ABC'. Nanoscale Advances, 2020, 2, 5329-5334.	4.6	16
11	Electroactive Silk Fibroin Films for Electrochemically Enhanced Delivery of Drugs. Macromolecular Materials and Engineering, 2020, 305, 2000130.	3.6	14
12	Tuning the thermoelectrical properties of anthracene-based self-assembled monolayers. Chemical Science, 2020, 11, 6836-6841.	7.4	26
13	Mapping nanoscale dynamic properties of suspended and supported multi-layer graphene membranes via contact resonance and ultrasonic scanning probe microscopies. Nanotechnology, 2020, 31, 415702.	2.6	2
14	Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films. Journal of the American Chemical Society, 2020, 142, 8555-8560.	13.7	34
15	Photodetecting Heterostructures from Graphene and Encapsulated Colloidal Quantum Dot Films. ACS Omega, 2019, 4, 15824-15828.	3.5	3
16	Correlation of shear forces and heat conductance in nanoscale junctions. Physical Review B, 2019, 100, .	3.2	3
17	Large-Area Heterostructures from Graphene and Encapsulated Colloidal Quantum Dots via the Langmuir–Blodgett Method. ACS Applied Materials & Interfaces, 2018, 10, 6805-6809.	8.0	12
18	Improving accuracy of nanothermal measurements via spatially distributed scanning thermal microscope probes. Journal of Applied Physics, 2018, 124, .	2.5	30

Benjamin J Robinson

#	Article	IF	CITATIONS
19	Formation of Two-Dimensional Micelles on Graphene: Multi-Scale Theoretical and Experimental Study. ACS Nano, 2017, 11, 3404-3412.	14.6	14
20	Field-Effect Control of Graphene–Fullerene Thermoelectric Nanodevices. Nano Letters, 2017, 17, 7055-7061.	9.1	61
21	Structural, optical and electrostatic properties of single and few-layers MoS ₂ : effect of substrate. 2D Materials, 2015, 2, 015005.	4.4	80
22	Probing nanoscale graphene–liquid interfacial interactions via ultrasonic force spectroscopy. Nanoscale, 2014, 6, 10806-10816.	5.6	19
23	Electromechanical Sensing of Substrate Charge Hidden under Atomic 2D Crystals. Nano Letters, 2014, 14, 3400-3404.	9.1	16
24	Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxy. Nanoscale Research Letters, 2014, 9, 321.	5.7	11
25	Nanoscale Interfacial Interactions of Graphene with Polar and Nonpolar Liquids. Langmuir, 2013, 29, 7735-7742.	3.5	51
26	Self-Assembly of Aminoâ^'Thiols via Goldâ^'Nitrogen Links and Consequence for in situ Elongation of Molecular Wires on Surface-Modified Electrodes. Journal of Physical Chemistry C, 2011, 115, 4200-4208.	3.1	33
27	Synthesis of Covalently Linked Molecular Bridges between Silicon Electrodes in CMOSâ€Based Arrays of Vertical Si/SiO ₂ /Si Nanogaps. Angewandte Chemie - International Edition, 2011, 50, 8722-8726.	13.8	15
28	Molecular Bridging of Silicon Nanogaps. ACS Nano, 2010, 4, 7401-7406.	14.6	37
29	Langmuir–Blodgett films incorporating molecular wire candidates of ester-substituted oligo(phenylene–ethynylene) derivatives. Surface Science, 2008, 602, 3683-3687.	1.9	12
30	Functional molecular wires. Physical Chemistry Chemical Physics, 2008, 10, 1859.	2.8	23
31	Characterization and Conductivity of Langmuir–Blodgett Films Prepared from an Amine-Substituted Oligo(phenylene ethynylene). Chemistry of Materials, 2008, 20, 258-264.	6.7	30
32	Organic rectifying junctions fabricated by ionic coupling. Chemical Communications, 2006, , 618-620.	4.1	16
33	Dipole reversal in Langmuir–Blodgett films of an optically nonlinear dye and its effect on the polarity for molecular rectification, Journal of Materials Chemistry, 2005, 15, 4203	6.7	33