
Xing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761533/publications.pdf Version: 2024-02-01

XINC 7HANC

#	Article	IF	CITATIONS
1	Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347, 970-974.	12.6	3,803
2	Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nature Communications, 2017, 8, 14675.	12.8	618
3	Facile Synthesis of Nickel–Iron/Nanocarbon Hybrids as Advanced Electrocatalysts for Efficient Water Splitting. ACS Catalysis, 2016, 6, 580-588.	11.2	354
4	3D Branched ZnO Nanowire Arrays Decorated with Plasmonic Au Nanoparticles for High-Performance Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 4480-4489.	8.0	294
5	Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy and Environmental Science, 2014, 7, 1409.	30.8	288
6	Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale, 2013, 5, 2274.	5.6	281
7	Ironâ€Đoped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. Advanced Functional Materials, 2017, 27, 1606635.	14.9	206
8	Molybdenum Phosphide/Carbon Nanotube Hybrids as pHâ€Universal Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2018, 28, 1706523.	14.9	185
9	Engineering MoS ₂ Basal Planes for Hydrogen Evolution via Synergistic Ruthenium Doping and Nanocarbon Hybridization. Advanced Science, 2019, 6, 1900090.	11.2	148
10	General Construction of Molybdenumâ€Based Nanowire Arrays for pHâ€Universal Hydrogen Evolution Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804600.	14.9	134
11	Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Materials Research Bulletin, 2013, 48, 2529-2534.	5.2	133
12	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 13135-13139.	13.8	126
13	Carbon quantum dots serving as spectral converters through broadband upconversion of near-infrared photons for photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2013, 1, 11529.	10.3	110
14	Nickel Hydr(oxy)oxide Nanoparticles on Metallic MoS ₂ Nanosheets: A Synergistic Electrocatalyst for Hydrogen Evolution Reaction. Advanced Science, 2018, 5, 1700644.	11.2	104
15	Bioinspired Photoelectric Conversion System Based on Carbon-Quantum-Dot-Doped Dye–Semiconductor Complex. ACS Applied Materials & Interfaces, 2013, 5, 5080-5084.	8.0	103
16	Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst. Nanoscale, 2014, 6, 867-873.	5.6	98
17	Tunable negative permeability in an isotropic dielectric composite. Applied Physics Letters, 2008, 92, .	3.3	78
18	Highly sensitive humidity sensing properties of carbon quantum dots films. Materials Research Bulletin, 2013, 48, 790-794.	5.2	71

XING ZHANG

#	Article	IF	CITATIONS
19	Carbon Quantum Dot/Silver Nanoparticle/Polyoxometalate Composites as Photocatalysts for Overall Water Splitting in Visible Light. ChemCatChem, 2014, 6, 2634-2641.	3.7	70
20	Robust ruthenium diphosphide nanoparticles for pH-universal hydrogen evolution reaction with platinum-like activity. Applied Catalysis B: Environmental, 2020, 274, 119092.	20.2	69
21	Molecular Engineering on Conjugated Side Chain for Polymer Solar Cells with Improved Efficiency and Accessibility. Chemistry of Materials, 2016, 28, 5887-5895.	6.7	65
22	Phthalocyanine Precursors To Construct Atomically Dispersed Iron Electrocatalysts. ACS Catalysis, 2019, 9, 6252-6261.	11.2	61
23	Synthesis of carbon quantum dots/SiO2 porous nanocomposites and their catalytic ability for photo-enhanced hydrocarbon selective oxidation. Dalton Transactions, 2013, 42, 10380.	3.3	57
24	Adsorption dominant catalytic activity of a carbon dots stabilized gold nanoparticles system. Dalton Transactions, 2014, 43, 10920.	3.3	50
25	Facile fabrication of ultrafine nickel-iridium alloy nanoparticles/graphene hybrid with enhanced mass activity and stability for overall water splitting. Journal of Energy Chemistry, 2020, 49, 166-173.	12.9	50
26	Template-free fabrication of mesoporous carbons from carbon quantum dots and their catalytic application to the selective oxidation of hydrocarbons. Nanoscale, 2014, 6, 5831.	5.6	45
27	Thieno[3,4- <i>c</i>]pyrrole-4,6(5 <i>H</i>)-dione Polymers with Optimized Energy Level Alignments for Fused-Ring Electron Acceptor Based Polymer Solar Cells. Chemistry of Materials, 2017, 29, 5636-5645.	6.7	43
28	A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects. Nano Energy, 2020, 75, 104981.	16.0	39
29	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie, 2017, 129, 13315-13319.	2.0	38
30	C ₃ N ₄ -sensitized TiO ₂ nanotube arrays with enhanced visible-light photoelectrochemical performance. Physical Chemistry Chemical Physics, 2015, 17, 17887-17893.	2.8	35
31	The electrochemical overall water splitting promoted by MoS2 in coupled nickel–iron (oxy)hydride/molybdenum sulfide/graphene composite. Chemical Engineering Journal, 2020, 397, 125454.	12.7	32
32	Rational design of conjugated side chains for high-performance all-polymer solar cells. Molecular Systems Design and Engineering, 2018, 3, 103-112.	3.4	24
33	Chemically Activating Tungsten Disulfide <i>via</i> Structural and Electronic Engineering Strategy for Upgrading the Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 49793-49801.	8.0	12
34	Au/SiOx composite thin film as catalyst for solvent-free hydrocarbon oxidation. Materials Research Bulletin, 2013, 48, 3717-3722.	5.2	7
35	Thermal transport and thermal stress in a molybdenum film–glass substrate system. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	1