
Peng Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761309/publications.pdf Version: 2024-02-01

PENC HAN

#	Article	IF	CITATIONS
1	Mathematical Analysis Model of Double-Stator Field Modulation HTS Machine Based on General Airgap Field Modulation Theory. IEEE Transactions on Energy Conversion, 2022, 37, 475-486.	3.7	25
2	A Tutorial on General Air-Gap Field Modulation Theory for Electrical Machines. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 1712-1732.	3.7	23
3	Design Optimization and Comparison of Direct-Drive Outer-Rotor SRMs Based on Fast Current Profile Estimation and Transient FEA. IEEE Transactions on Industry Applications, 2021, 57, 236-245.	3.3	16
4	Integrated Modular Motor Drives Based on Multiphase Axial-flux PM Machines with Fractional-slot Concentrated Windings. , 2021, , .		4
5	Analysis of Torque Production in Axial-flux Vernier PM Machines of the MAGNUS Type. , 2021, , .		5
6	Modeling of Bearing Voltage in Electric Machines Based on Electromagnetic FEA and Measured Bearing Capacitance. IEEE Transactions on Industry Applications, 2021, 57, 4765-4775.	3.3	12
7	Design Optimization of a Very High Power Density Motor with a Reluctance Rotor and a Modular Stator Having PMs and Toroidal Windings. , 2021, , .		11
8	On the Modeling of Bearing Voltage and Current in PWM Converter-fed Electric Machines Using Electromagnetic Finite Element Analysis. , 2021, , .		3
9	Design and Analysis of Double-Stator Flux Modulated Permanent Magnet Motor Based on Flux Modulation Theory. , 2020, , .		1
10	Residential Electrical Load Monitoring and Modeling – State of the Art and Future Trends for Smart Homes and Grids. Electric Power Components and Systems, 2020, 48, 1125-1143.	1.0	17
11	Evaluation of Bearing Voltage Reduction in Electric Machines by Using Insulated Shaft and Bearings. , 2020, , .		8
12	Combined Numerical and Experimental Determination of Ball Bearing Capacitances for Bearing Current Prediction. , 2020, , .		6
13	Optimal Study of a High Specific Torque Vernier-type Axial-flux PM Machine with Two Different Stators and a Single Winding. , 2020, , .		7
14	Analysis of Airgap Field Modulation Principle of Simple Salient Poles. IEEE Transactions on Industrial Electronics, 2019, 66, 2628-2638.	5.2	69
15	Analytical Analysis and Performance Characterization of Brushless Doubly Fed Machines With Multibarrier Rotors. IEEE Transactions on Industry Applications, 2019, 55, 5758-5767.	3.3	32
16	Radial Forces in Brushless Doubly-Fed Machines. , 2019, , .		2
17	Synthesis of Airgap Magnetic Field Modulation Phenomena in Electric Machines. , 2019, , .		4
18	Axial-field Vernier-type Flux Modulation Machines for Low-speed Direct-drive Applications. , 2019, , .		10

Peng Han

#	Article	IF	CITATIONS
19	Analysis and Dynamic Control of a Dual-Stator BDFIG-DC System Supplying DC Grid With Minimized Torque Ripple Through Harmonic Current Injection. IEEE Transactions on Power Electronics, 2019, 34, 5388-5399.	5.4	12
20	Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects. IEEE Transactions on Industrial Electronics, 2018, 65, 5422-5435.	5.2	59
21	Quantitative Evaluation of the Topologies and Electromagnetic Performances of Dual-Three-Phase Flux-Switching Machines. IEEE Transactions on Industrial Electronics, 2018, 65, 9157-9167.	5.2	23
22	Steady-State Characteristics of the Dual-Stator Brushless Doubly Fed Induction Generator. IEEE Transactions on Industrial Electronics, 2018, 65, 200-210.	5.2	33
23	Unbalanced and Low-Order Harmonic Voltage Mitigation of Stand-Alone Dual-Stator Brushless Doubly Fed Induction Wind Generator. IEEE Transactions on Industrial Electronics, 2018, 65, 9135-9146.	5.2	22
24	Analysis of the Operation Principle for Rotor-Permanent-Magnet Flux-Switching Machines. IEEE Transactions on Industrial Electronics, 2018, 65, 1062-1073.	5.2	51
25	Theoretical and Experimental Investigation of the Brushless Doubly-Fed Machine with a Multi-Barrier Rotor. , 2018, , .		4
26	Brushless doubly-fed machines: Opportunities and challenges. Chinese Journal of Electrical Engineering, 2018, 4, 1-17.	2.3	66
27	General Airgap Field Modulation Theory for Electrical Machines. IEEE Transactions on Industrial Electronics, 2017, 64, 6063-6074.	5.2	353
28	Fault tolerant control for power side current sensor in wind energy conversion system with cascaded brushless DFIG. , 2017, , .		5
29	Analysis of a novel field-modulated dual-stator brushless wind generator with three electrical ports. , 2017, , .		0
30	Multifrequency spiral vector model for the brushless doubly-fed induction machine. , 2017, , .		4
31	Torque/Power Density Optimization of a Dual-Stator Brushless Doubly-Fed Induction Generator for Wind Power Application. IEEE Transactions on Industrial Electronics, 2017, 64, 9864-9875.	5.2	35
32	Single-Electrical-Port Control of Cascaded Doubly-Fed Induction Machine for EV/HEV Applications. IEEE Transactions on Power Electronics, 2017, 32, 7233-7243.	5.4	22
33	Dual-Electrical-Port Control of Cascaded Doubly-Fed Induction Machine for EV/HEV Applications. IEEE Transactions on Industry Applications, 2017, 53, 1390-1398.	3.3	28
34	Analysis of dual-stator HTS reluctance-rotor brushless doubly-fed wind generator. , 2017, , .		0
35	Design and Analysis of a Brushless Doubly-Fed Induction Machine With Dual-Stator Structure. IEEE Transactions on Energy Conversion, 2016, 31, 1132-1141.	3.7	45
36	Dual-electrical-port control of cascaded brushless doubly-fed induction drive for EV/HEV applications. , 2016, , .		0

Peng Han

#	Article	IF	CITATIONS
37	Direct Voltage Control of Dual-Stator Brushless Doubly Fed Induction Generator for Stand-Alone Wind Energy Conversion Systems. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	54
38	Comparison of control strategies for a novel dual-stator brushless doubly-fed induction generator in wind energy applications. , 2015, , .		8
39	Modeling and Performance Analysis of A Dual-Stator Brushless Doubly-Fed Induction Machine Based on Spiral Vector Theory. IEEE Transactions on Industry Applications, 2015, , 1-1.	3.3	10
40	Single-electrical-port control of cascaded brushless doubly-fed induction drive for EV/HEV applications. , 2015, , .		3
41	A coupled field-circuit method for thermal modeling of electrical machine. , 2015, , .		5
42	Unified spiral vector model of the Dual-Stator Brushless Doubly-Fed Induction Machine. , 2014, , .		3
43	Modeling and control of a novel dual-stator brushless doubly-fed wind power generation system. , 2014, , .		6
44	A dual-stator brushless doubly-fed induction motor for EV/HEV applications. , 2014, , .		13