
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761300/publications.pdf Version: 2024-02-01

HUIVU CHEN

#	Article	IF	CITATIONS
1	Bundlelike CuCo ₂ O ₄ Microstructures Assembled with Ultrathin Nanosheets As Battery-Type Electrode Materials for High-Performance Hybrid Supercapacitors. ACS Applied Energy Materials, 2020, 3, 8026-8037.	5.1	172
2	A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors. Journal of Materiomics, 2021, 7, 98-126.	5.7	115
3	Solvothermal Synthesis and Characterization of Chalcopyrite CuInSe2 Nanoparticles. Nanoscale Research Letters, 2010, 5, 217-223.	5.7	102
4	Porous MgCo2O4 nanoflakes serve as electrode materials for hybrid supercapacitors with excellent performance. Journal of Colloid and Interface Science, 2022, 625, 925-935.	9.4	99
5	MgCo ₂ O ₄ -based electrode materials for electrochemical energy storage and conversion: a comprehensive review. Sustainable Energy and Fuels, 2021, 5, 4807-4829.	4.9	94
6	Selenium nanowires and nanotubes synthesized via a facile template-free solution method. Materials Research Bulletin, 2010, 45, 699-704.	5.2	78
7	Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance. Ceramics International, 2019, 45, 8577-8584.	4.8	72
8	Facile growth of nickel foam-supported MnCo2O4.5 porous nanowires as binder-free electrodes for high-performance hybrid supercapacitors. Journal of Energy Storage, 2022, 50, 104297.	8.1	70
9	MnO2 hierarchical microspheres assembled from porous nanoplates for high-performance supercapacitors. Ceramics International, 2019, 45, 1058-1066.	4.8	69
10	Large-scale synthesis of highly porous carbon nanosheets for supercapacitor electrodes. Journal of Alloys and Compounds, 2016, 677, 105-111.	5.5	68
11	Facile solvothermal synthesis of novel MgCo2O4 twinned-hemispheres for high performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 818, 152905.	5.5	68
12	Growth of uniform CuCo2O4 porous nanosheets and nanowires for high-performance hybrid supercapacitors. Journal of Energy Storage, 2022, 52, 105048.	8.1	64
13	Uniform and porous Mn-doped Co3O4 microspheres: Solvothermal synthesis and their superior supercapacitor performances. Ceramics International, 2019, 45, 11876-11882.	4.8	60
14	Porous CuCo2O4 microtubes as a promising battery-type electrode material for high-performance hybrid supercapacitors. Journal of Materiomics, 2021, 7, 1358-1368.	5.7	59
15	Solvothermal synthesis of porous MnCo2O4.5 spindle-like microstructures as high-performance electrode materials for supercapacitors. Ceramics International, 2018, 44, 22622-22631.	4.8	57
16	Battery-type and binder-free MgCo2O4-NWs@NF electrode materials for the assembly of advanced hybrid supercapacitors. International Journal of Hydrogen Energy, 2022, 47, 15807-15819.	7.1	56
17	Hydrothermal synthesis of flower-like MgCo2O4 porous microstructures as high-performance electrode material for asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 824, 153939.	5.5	53
18	Simple Preparation of Porous FeCo ₂ O ₄ Microspheres and Nanosheets for Advanced Asymmetric Supercapacitors. ACS Applied Energy Materials, 2020, 3, 11307-11317.	5.1	52

#	Article	IF	CITATIONS
19	Simple synthesis of honeysuckle-like CuCo2O4/CuO composites as a battery type electrode material for high-performance hybrid supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 66-79.	7.1	52
20	Facile synthesis of porous Mn-doped Co3O4 oblique prisms as an electrode material with remarkable pseudocapacitance. Ceramics International, 2019, 45, 8008-8016.	4.8	51
21	Simple preparation of ZnCo2O4 porous quasi-cubes for high performance asymmetric supercapacitors. Applied Surface Science, 2020, 515, 146008.	6.1	51
22	Solvothermal synthesis of novel pod-like MnCo2O4.5 microstructures as high-performance electrode materials for supercapacitors. International Journal of Hydrogen Energy, 2020, 45, 3016-3027.	7.1	50
23	Rapid hydrothermal synthesis of snowflake-like ZnCo2O4/ZnO mesoporous microstructures with excellent electrochemical performances. Ceramics International, 2019, 45, 12243-12250.	4.8	49
24	Metallic Copper Nanostructures Synthesized by a Facile Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2010, 10, 629-636.	0.9	47
25	Low-temperature solution synthesis of CuO nanorods with thin diameter. Materials Letters, 2013, 93, 60-63.	2.6	47
26	Hydrothermal synthesis of mesoporous MnCo2O4/CoCo2O4 ellipsoid-like microstructures for high-performance electrochemical supercapacitors. Ceramics International, 2019, 45, 7244-7252.	4.8	47
27	Green synthesis and characterization of se nanoparticles and nanorods. Electronic Materials Letters, 2011, 7, 333-336.	2.2	46
28	Simple solvothermal synthesis of magnesium cobaltite microflowers as a battery grade material with high electrochemical performances. Ceramics International, 2019, 45, 14642-14651.	4.8	41
29	Facile hydrothermal synthesis of porous MgCo ₂ O ₄ nanoflakes as an electrode material for high-performance asymmetric supercapacitors. Nanoscale Advances, 2020, 2, 3263-3275.	4.6	41
30	Uniform MnCo ₂ O _{4.5} porous nanowires and quasi-cubes for hybrid supercapacitors with excellent electrochemical performances. Nanoscale Advances, 2021, 3, 4447-4458.	4.6	41
31	Flower-like hierarchical nickel microstructures: Facile synthesis, growth mechanism, and their magnetic properties. Materials Research Bulletin, 2012, 47, 1839-1844.	5.2	38
32	Simple growth of mesoporous zinc cobaltite urchin-like microstructures towards high-performance electrochemical capacitors. Ceramics International, 2019, 45, 4059-4066.	4.8	38
33	Hydrothermal synthesis of Fe-doped Co3O4 urchin-like microstructures with superior electrochemical performances. Journal of Alloys and Compounds, 2020, 821, 153507.	5.5	38
34	Silver-coated glass fibers prepared by a simple electroless plating technique. Journal of Materials Science: Materials in Electronics, 2014, 25, 4638-4642.	2.2	35
35	Solvothermal preparation of zinc cobaltite mesoporous microspheres for high-performance electrochemical supercapacitors. Journal of Alloys and Compounds, 2019, 781, 425-432.	5.5	34
36	Template-free synthesis of novel Co3O4 micro-bundles assembled with flakes for high-performance hybrid supercapacitors. Ceramics International, 2021, 47, 716-724.	4.8	34

#	Article	IF	CITATIONS
37	Fabrication of conductive copper-coated glass fibers through electroless plating process. Journal of Materials Science: Materials in Electronics, 2014, 25, 2611-2617.	2.2	33
38	Battery-type CuCo2O4/CuO nanocomposites as positive electrode materials for highly capable hybrid supercapacitors. Ceramics International, 2021, 47, 24877-24886.	4.8	32
39	High-performance hybrid supercapacitor based on the porous copper cobaltite/cupric oxide nanosheets as a battery-type positive electrode material. International Journal of Hydrogen Energy, 2021, 46, 28144-28155.	7.1	32
40	Uniform MgCo2O4 porous nanoflakes and nanowires with superior electrochemical performance for asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 884, 161087.	5.5	32
41	Egg Albumin-Assisted Hydrothermal Synthesis of Co3O4 Quasi-Cubes as Superior Electrode Material for Supercapacitors with Excellent Performances. Nanoscale Research Letters, 2019, 14, 340.	5.7	29
42	Silver-coated glass fabric composites prepared by electroless plating. Materials Letters, 2016, 180, 144-147.	2.6	25
43	Copper@carbon fiber composites prepared by a simple electroless plating technique. Materials Letters, 2016, 173, 211-213.	2.6	23
44	Bamboo chopsticks-derived porous carbon microtubes/flakes composites for supercapacitor electrodes. Materials Letters, 2016, 185, 359-362.	2.6	21
45	Facile and green synthesis of mesoporous Co 3 O 4 nanowires. Materials Letters, 2016, 163, 72-75.	2.6	21
46	Intrinsically stretchable conductors and interconnects for electronic applications. Materials Chemistry Frontiers, 2019, 3, 1032-1051.	5.9	21
47	Rapid and template-free synthesis of Cu2O truncated octahedra using glucose as green reducing agent. Materials Letters, 2018, 210, 31-34.	2.6	21
48	Electrospun NiO/C nanofibers as electrode materials for hybrid supercapacitors with superior electrochemical performance. International Journal of Hydrogen Energy, 2022, 47, 16985-16995.	7.1	21
49	The CuCo2O4/CuO composite-based microspheres serve as a battery-type cathode material for highly capable hybrid supercapacitors. Journal of Alloys and Compounds, 2022, 894, 162566.	5.5	19
50	Chain-like CoNi alloy microstructures fabricated by a PVP-assisted solvothermal process. Materials Letters, 2014, 131, 306-309.	2.6	18
51	Template-free synthesis and characterization of dendritic cobalt microstructures by hydrazine reduction route. Materials Research Bulletin, 2012, 47, 4353-4358.	5.2	17
52	Conductive glass fabrics@nickel composites prepared by a facile electroless deposition method. Materials Letters, 2016, 171, 158-161.	2.6	16
53	CTAB-assisted hydrothermal synthesis of Cu2Se films composed of nanowire networks. Materials Letters, 2018, 210, 62-65.	2.6	16
54	Synthesis and characterization of hollow silver spheres at room temperature. Electronic Materials Letters, 2011, 7, 151-154.	2.2	15

Ηυιγυ Chen

#	Article	IF	CITATIONS
55	Template-free synthesis of magnetic CoNi nanoparticles via a solvothermal method. Materials Letters, 2015, 138, 158-161.	2.6	15
56	Three-Dimensional CuO Nanobundles Consisted of Nanorods: Hydrothermal Synthesis, Characterization, and Formation Mechanism. Journal of Nanoscience and Nanotechnology, 2010, 10, 5121-5128.	0.9	14
57	Formation of flower-like magnesium hydroxide microstructure via a solvothermal process. Electronic Materials Letters, 2012, 8, 529-533.	2.2	14
58	Fabrication of cobalt hollow microspheres via a PVP-assisted solvothermal process. Materials Letters, 2013, 110, 87-90.	2.6	13
59	Electroless deposition method for silverâ€coated carbon fibres. Micro and Nano Letters, 2015, 10, 315-317.	1.3	13
60	Facile synthesis of highly porous N-doped CNTs/Fe ₃ C and its electrochemical properties. RSC Advances, 2016, 6, 44013-44018.	3.6	13
61	Conductive and magnetic glass microsphere/cobalt composites prepared via an electroless plating route. Materials Letters, 2013, 112, 97-100.	2.6	12
62	Template-free hydrothermal synthesis of 3D hierarchical Co3O4 microflowers constructed by mesoporous nanoneedles. Materials Letters, 2018, 215, 179-182.	2.6	12
63	Conductive nickel/carbon fiber composites prepared via an electroless plating route. Journal of Materials Science: Materials in Electronics, 2016, 27, 5686-5690.	2.2	11
64	Fabrication of copper-coated glass fabric composites through electroless plating process. Journal of Materials Science: Materials in Electronics, 2017, 28, 798-802.	2.2	11
65	Template-free formation of urchin-like FeNi3 microstructures by hydrothermal reduction. Materials Letters, 2013, 91, 75-77.	2.6	10
66	Highly aligned magnetic composite nanofibers fabricated by magnetic-field-assisted electrospinning PAN/FeCo solution. High Performance Polymers, 2019, 31, 230-237.	1.8	10
67	Cobalt microtrees assembled by dendrites: Hydrothermal synthesis and their enhanced magnetic properties. Materials Letters, 2013, 99, 1-4.	2.6	9
68	Hydrothermal synthesis of flower-like zinc oxide microstructures with large specific surface area. Journal of Materials Science: Materials in Electronics, 2017, 28, 16855-16860.	2.2	9
69	Preparation and magnetic property of chain-like cobalt microrods. Materials Research Bulletin, 2013, 48, 2399-2402.	5.2	8
70	Synthesis and characterization of CuInSe2 nanoparticles via a solution method. Materials Research Bulletin, 2012, 47, 2730-2734.	5.2	7
71	Solvothermal synthesis and characterization of copper indium diselenide microflowers. Materials Letters, 2013, 106, 79-82.	2.6	7
72	Facile and controlled synthesis of FeCo nanoparticles via a hydrothermal method. Journal of Materials Science: Materials in Electronics, 2014, 25, 1965-1969.	2.2	7

#	Article	IF	CITATIONS
73	Hydrothermal synthesis of silver crystals via a sodium chloride assisted route. Materials Letters, 2014, 136, 175-178.	2.6	7
74	Facile synthesis of electromagnetic Ni@glass fiber composites via electroless deposition method. Journal of Materials Science: Materials in Electronics, 2015, 26, 3530-3537.	2.2	7
75	Hydrothermal synthesis of β-Ni(OH)2 platelets and their thermal conversion to NiO. Journal of Materials Science: Materials in Electronics, 2014, 25, 3716-3720.	2.2	6
76	Rapid and simple synthesis of 3D ZnO microflowers at room temperature. Materials Letters, 2015, 158, 347-350.	2.6	6
77	Novel chain-like cobalt–nickel microstructures fabricated by a CTAB-assisted hydrothermal method. Materials Letters, 2016, 166, 188-191.	2.6	6
78	Surfactant-assisted hydrothermal synthesis of 3D urchin-like cobalt–nickel microstructures. Materials Letters, 2016, 162, 13-16.	2.6	6
79	Controlled synthesis and characterisation of flower-like cobalt microstructures. Micro and Nano Letters, 2011, 6, 122.	1.3	5
80	Large-scale synthesis of ultralong copper nanowires via a facile ethylenediamine-mediated process. Journal of Materials Science: Materials in Electronics, 2014, 25, 2344-2347.	2.2	5
81	Porous hematite microflowers toward the adsorption of organic pollutants from water. Materials Letters, 2015, 159, 64-67.	2.6	5
82	Solvothermal synthesis of cauliflower-like CoNi microstructures with enhanced magnetic property. Materials Letters, 2015, 142, 246-249.	2.6	5
83	Glass fabric@cobalt core-shell composites: Electroless plating fabrication and their enhanced magnetic properties. Materials Letters, 2017, 188, 80-83.	2.6	5
84	Electroless deposition of pure copper film on carbon fabric substrate using hydrazine as reducing agent. Journal of Materials Science: Materials in Electronics, 2017, 28, 13869-13872.	2.2	4
85	Hydrothermal synthesis of chainâ€ŀike nickel microstructures with enhanced magnetic properties. Micro and Nano Letters, 2014, 9, 261-263.	1.3	3
86	Electroless plating route to the synthesis of glass microspheres/copper composites with excellent conductivity. Micro and Nano Letters, 2014, 9, 770-774.	1.3	3
87	Facile synthesis of ellipsoidal hematite nanostructures via an EDA-assisted solvothermal method. Journal of Materials Science: Materials in Electronics, 2015, 26, 5446-5450.	2.2	3
88	PVP-assisted synthesis of flower-like hematite microstructures composed of porous nanosheets. Journal of Materials Science: Materials in Electronics, 2015, 26, 2982-2986.	2.2	3
89	Hydrothermal synthesis of novel Ni microflowers with enhanced ferromagnetic properties. Micro and Nano Letters, 2019, 14, 455-457.	1.3	3
90	CTAB-assisted synthesis of eight-horn-shaped Cu2O crystals via a simple solution approach. Journal of Materials Science: Materials in Electronics, 2018, 29, 4256-4260.	2.2	2

#	Article	IF	CITATIONS
91	Dendrite-like cupric oxide microstructures prepared via a facile SDBS-assisted hydrothermal route. Journal of Materials Science: Materials in Electronics, 2018, 29, 3178-3181.	2.2	2
92	Large scale synthesis of ultrathin cupric oxide nanosheets via a rapid microwave-assisted and template-free route. Materials Letters, 2018, 214, 138-141.	2.6	2
93	Preparation of hierarchical cobalt dendritic flowers via a simple solvothermal approach. Journal of Materials Science: Materials in Electronics, 2014, 25, 3448-3454.	2.2	1
94	A general route to the synthesis of PS/metal composites and their conversion to metal hollow microspheres. Journal of Materials Science: Materials in Electronics, 2015, 26, 10049-10054.	2.2	1
95	Simple synthesis of novel mushroom-like FeNi3 microstructures by a hydrothermal reduction. Materials Research Innovations, 2017, , 1-4.	2.3	1
96	Synthesis and characterization of CuSe and InSe nanoparticles for CuInSe <inf>2</inf> based solar cell application. , 2009, , .		0
97	Synthesis of chalcopyrite CuInSe <inf>2</inf> nanoparticles via a facile solvothermal method., 2010,,.		0
98	Formation of Ni microflowers constructed by solid-particle-core and petal-shell with increased coercivity. Materials Letters, 2018, 217, 223-226.	2.6	0
99	Templateâ€free synthesis of novel urchinâ€like nickel microstructures with enhanced ferromagnetic properties. Micro and Nano Letters, 2019, 14, 812-814.	1.3	0