## Mark E Mccourt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761234/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Content-Adaptive Memory for Viewer-Aware Energy-Quality Scalable Mobile Video Systems. IEEE Access, 2019, 7, 47479-47493.                                                                          | 4.2 | 8         |
| 2  | Viewer-Aware Intelligent Efficient Mobile Video Embedded Memory. IEEE Transactions on Very Large<br>Scale Integration (VLSI) Systems, 2018, 26, 684-696.                                           | 3.1 | 9         |
| 3  | Dissecting the influence of the collinear and flanking bars in White's effect. Vision Research, 2016, 127, 11-17.                                                                                  | 1.4 | 5         |
| 4  | Using Eye Tracking to Investigate Reading Patterns and Learning Styles of Software Requirement<br>Inspectors to Enhance Inspection Team Outcome. , 2016, , .                                       |     | 6         |
| 5  | Auditory capture of visual motion. NeuroReport, 2016, 27, 1095-1100.                                                                                                                               | 1.2 | 2         |
| 6  | The Oriented Difference of Gaussians (ODOG) model of brightness perception: Overview and executable Mathematica notebooks. Behavior Research Methods, 2016, 48, 306-312.                           | 4.0 | 18        |
| 7  | Luminance-adaptive smart video storage system. , 2016, , .                                                                                                                                         |     | 4         |
| 8  | Visuospatial Attention and Autism Spectrum Quotient: A Cued Line Bisection Study. Journal of Vision, 2016, 16, 480.                                                                                | 0.3 | 0         |
| 9  | Dissociation of perception and action in audiovisual multisensory integration. European Journal of Neuroscience, 2015, 42, 2915-2922.                                                              | 2.6 | 23        |
| 10 | Comments and Responses to "Theoretical Approaches to Lightness and Perception― Perception, 2015,<br>44, 359-367.                                                                                   | 1.2 | 5         |
| 11 | What visual illusions tell us about underlying neural mechanisms and observer strategies for tackling the inverse problem of achromatic perception. Frontiers in Human Neuroscience, 2015, 9, 205. | 2.0 | 8         |
| 12 | Brightness induction and suprathreshold vision: Effects of age and visual field. Vision Research, 2015, 106, 36-46.                                                                                | 1.4 | 4         |
| 13 | Dissecting the influence of the collinear and flanking bars in White's effect. Journal of Vision, 2015, 15, 626.                                                                                   | 0.3 | 1         |
| 14 | Modeling lateral geniculate nucleus response with contrast gain control Part 2: analysis. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 348.        | 1.5 | 3         |
| 15 | Brightness induction magnitude declines with increasing distance from the inducing field edge.<br>Vision Research, 2013, 78, 39-45.                                                                | 1.4 | 9         |
| 16 | Atypical category processing and hemispheric asymmetries in high-functioning children with autism:<br>Revealed through high-density EEG mapping. Cortex, 2013, 49, 1259-1267.                      | 2.4 | 30        |
| 17 | The Roles of Physical and Physiological Simultaneity in Audiovisual Multisensory Facilitation.<br>I-Perception, 2013, 4, 213-228.                                                                  | 1.4 | 29        |
| 18 | Modeling lateral geniculate nucleus response with contrast gain control Part 1: formulation.<br>Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 2401. | 1.5 | 4         |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Analysis of multidimensional difference-of-Gaussians filters in terms of directly observable<br>parameters. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30,<br>1002.            | 1.5 | 2         |
| 20 | Lighting direction and visual field modulate perceived intensity of illumination. Frontiers in Psychology, 2013, 4, 983.                                                                                                     | 2.1 | 6         |
| 21 | The question of simultaneity in multisensory integration. Proceedings of SPIE, 2012, , .                                                                                                                                     | 0.8 | 3         |
| 22 | When is spatial filtering enough? Investigation of brightness and lightness perception in stimuli containing a visible illumination component. Vision Research, 2012, 60, 40-50.                                             | 1.4 | 34        |
| 23 | Hemifield asymmetry in the potency of exogenous auditory and visual cues. Vision Research, 2011, 51, 1207-1215.                                                                                                              | 1.4 | 14        |
| 24 | Spatiotemporal analysis of brightness induction. Vision Research, 2011, 51, 1872-1879.                                                                                                                                       | 1.4 | 8         |
| 25 | Biases of spatial attention in vision and audition. Brain and Cognition, 2010, 73, 229-235.                                                                                                                                  | 1.8 | 34        |
| 26 | The effect of acute ethanol challenge on global visuospatial attention: Exaggeration of leftward bias in line bisection. Laterality, 2010, 15, 327-342.                                                                      | 1.0 | 8         |
| 27 | Spatial filtering versus anchoring accounts of brightness/lightness perception in staircase and simultaneous brightness/lightness contrast stimuli. Journal of Vision, 2009, 9, 22-22.                                       | 0.3 | 15        |
| 28 | Simple cell response properties imply receptive field structure: balanced Gabor and/or bandlimited<br>field functions. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009,<br>26, 2067. | 1.5 | 4         |
| 29 | Parvocellular and Magnocellular Contributions to the Initial Generators of the Visual Evoked<br>Potential: High-Density Electrical Mapping of the "C1―Component. Brain Topography, 2008, 21, 11-21.                          | 1.8 | 87        |
| 30 | Hemispheric asymmetry and callosal integration of visuospatial attention in schizophrenia: A tachistoscopic line bisection study. Schizophrenia Research, 2008, 102, 189-196.                                                | 2.0 | 33        |
| 31 | Coming to terms with lightness and brightness: Effects of stimulus configuration and instructions on brightness and lightness judgments. Journal of Vision, 2008, 8, 3-3.                                                    | 0.3 | 33        |
| 32 | Nearly instantaneous brightness induction. Journal of Vision, 2008, 8, 15.                                                                                                                                                   | 0.3 | 30        |
| 33 | Semantic Processing Precedes Affect Retrieval: The Neurological Case for Cognitive Primacy in Visual<br>Processing. Review of General Psychology, 2006, 10, 41-55.                                                           | 3.2 | 66        |
| 34 | A Multiscale Filtering Explanation of Gradient Induction and Remote Brightness Induction Effects: A<br>Reply to Logvinenko (2003). Perception, 2005, 34, 793-802.                                                            | 1.2 | 15        |
| 35 | Comparing the Spatial-Frequency Response of First-Order and Second-Order Lateral Visual<br>Interactions: Grating Induction and Contrast – Contrast. Perception, 2005, 34, 501-510.                                           | 1.2 | 6         |
| 36 | Unilateral Visual Cueing and Asymmetric Line Geometry Share a Common Attentional Origin in the<br>Modulation of Pseudoneglect. Cortex, 2005, 41, 499-511.                                                                    | 2.4 | 48        |

MARK E MCCOURT

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast. Vision Research, 2005, 45, 607-615. | 1.4 | 55        |
| 38 | A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization. Vision Research, 2004, 44, 2483-2503.                                                           | 1.4 | 129       |
| 39 | Brightening prospects for early cortical coding of perceived luminance: a high-density electrical mapping study. NeuroReport, 2004, 15, 49-56.                                                                                           | 1.2 | 19        |
| 40 | Right hemisphere control of visuospatial attention: line-bisection judgments evaluated with high-density electrical mapping and source analysisâ~†. NeuroImage, 2003, 19, 710-726.                                                       | 4.2 | 181       |
| 41 | Neuropsychology: From Theory to Practice, by D. Andrewes. 2001. East Sussex, UK: Psychology Press,<br>Ltd.608 pp., \$49.95 (HB) Journal of the International Neuropsychological Society, 2003, 9, 965-965.                               | 1.8 | 1         |
| 42 | A Multiscale Spatial Filtering Account of Brightness Phenomena. , 2003, , 47-72.                                                                                                                                                         |     | 24        |
| 43 | The Influence of Unimanual Response on Pseudoneglect Magnitude. Brain and Cognition, 2001, 45, 52-63.                                                                                                                                    | 1.8 | 61        |
| 44 | A multiscale spatial filtering account of the Wertheimer–Benary effect and the corrugated Mondrian. Vision Research, 2001, 41, 2487-2502.                                                                                                | 1.4 | 63        |
| 45 | Evaluating Therapeutic Approaches to Hemineglect. Journal of the International Neuropsychological Society, 2001, 7, 532-532.                                                                                                             | 1.8 | Ο         |
| 46 | The influence of viewing eye on pseudoneglect magnitude. Journal of the International Neuropsychological Society, 2001, 7, 391-395.                                                                                                      | 1.8 | 21        |
| 47 | Performance consistency of normal observers in forced-choice tachistoscopic visual line bisection.<br>Neuropsychologia, 2001, 39, 1065-1076.                                                                                             | 1.6 | 97        |
| 48 | Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks.<br>Neuropsychologia, 2000, 38, 93-110.                                                                                                         | 1.6 | 1,012     |
| 49 | Stimulus modulation of pseudoneglect: influence of line geometry. Neuropsychologia, 2000, 38, 520-524.                                                                                                                                   | 1.6 | 30        |
| 50 | Centripetal versus centrifugal bias in visual line bisection focusing attention on two hypotheses.<br>Frontiers in Bioscience - Landmark, 2000, 5, d58-71.                                                                               | 3.0 | 41        |
| 51 | Asymmetries of Visuospatial Attention are Modulated by Viewing Distance and Visual Field Elevation:<br>Pseudoneglect in Peripersonal and Extrapersonal Space. Cortex, 2000, 36, 715-731.                                                 | 2.4 | 92        |
| 52 | Visuospatial attention in line bisection: stimulusmodulation of pseudoneglect. Neuropsychologia, 1999, 37, 843-855.                                                                                                                      | 1.6 | 255       |
| 53 | A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vision Research, 1999, 39, 4361-4377.                                                                                | 1.4 | 199       |
| 54 | Brightness with and without Perceived Transparency: When Does it Make a Difference?. Perception, 1997, 26, 493-506.                                                                                                                      | 1.2 | 33        |

MARK E MCCOURT

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Similar mechanisms underlie simultaneous brightness contrast and grating induction. Vision<br>Research, 1997, 37, 2849-2869.                                                             | 1.4 | 82        |
| 56 | The effects of gender, menstrual phase and practice on the perceived location of the midsagittal plane. Neuropsychologia, 1997, 35, 717-724.                                             | 1.6 | 56        |
| 57 | Cognitive and perceptual influences on visual line bisection: Psychophysical and chronometric analyses of pseudoneglect. Neuropsychologia, 1997, 35, 369-380.                            | 1.6 | 115       |
| 58 | Facilitation of Luminance Grating Detection by Induced Gratings. Vision Research, 1996, 36, 2563-2573.                                                                                   | 1.4 | 15        |
| 59 | Contrast-matching analysis of grating induction and suprathreshold contrast perception. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1994, 11, 14. | 1.5 | 30        |
| 60 | Grating induction: a new explanation for stationary phantom gratings. Vision Research, 1994, 34, 1609-1617.                                                                              | 1.4 | 18        |
| 61 | The influence of illusory contours on the detection of luminance increments and decrements. Vision Research, 1994, 34, 2469-2475.                                                        | 1.4 | 11        |
| 62 | The effect of edge blur on grating induction magnitude. Vision Research, 1993, 33, 2499-2507.                                                                                            | 1.4 | 12        |
| 63 | Properties of area 17/18 border neurons contributing to the visual transcallosal pathway in the cat.<br>Visual Neuroscience, 1990, 5, 83-98.                                             | 1.0 | 28        |
| 64 | Disappearance of grating induction at scotopic luminances. Vision Research, 1990, 30, 431-437.                                                                                           | 1.4 | 26        |
| 65 | Factors governing the adaptation of cells in area-17 of the cat visual cortex. Biological Cybernetics, 1988, 59, 229-236.                                                                | 1.3 | 65        |
| 66 | Layering in lamina 6 of cat striate cortex. Brain Research, 1986, 364, 181-185.                                                                                                          | 2.2 | 21        |
| 67 | Anisotropy in the preferred directions and visual field location of directionally-selective optic nerve fibers in the gray squirrel. Vision Research, 1985, 25, 615-618.                 | 1.4 | 6         |
| 68 | Spatial frequency interference on grating-induction. Vision Research, 1985, 25, 1507-1518.                                                                                               | 1.4 | 15        |
| 69 | Visual grating induction. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1985, 2, 1220.                                                              | 1.5 | 54        |
| 70 | Refractive state, depth of focus and accommodation of the eye of the California ground squirrel<br>(Spermophilus Beecheyi). Vision Research, 1984, 24, 1261-1266.                        | 1.4 | 15        |
| 71 | Brightness Induction and the Café Wall Illusion. Perception, 1983, 12, 131-142.                                                                                                          | 1.2 | 33        |
| 72 | A spatial frequency dependent grating-induction effect. Vision Research, 1982, 22, 119-134.                                                                                              | 1.4 | 195       |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Visual sensitivity of ground squirrels to spatial and temporal luminance variations. Journal of<br>Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1980, 136,<br>291-299. | 1.6 | 30        |
| 74 | Improving the Requirements Inspection Abilities of Computer Science Students through Analysis of their Reading and Learning Styles. , 0, , .                                                                   |     | 0         |