Hiroaki Iguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/176122/publications.pdf

Version: 2024-02-01

54 papers	651 citations	14 h-index	677142 22 g-index
58	58	58	612 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Porous Molecular Conductor: Electrochemical Fabrication of Through-Space Conduction Pathways among Linear Coordination Polymers. Journal of the American Chemical Society, 2019, 141, 6802-6806.	13.7	94
2	Direct Observation of Ordered Highâ€Spin–Lowâ€Spin Intermediate States of an Iron(III) Threeâ€Step Spinâ€Crossover Complex. Angewandte Chemie - International Edition, 2016, 55, 5184-5189.	13.8	59
3	Multiple-Hydrogen-Bond Approach to Uncommon Pd(III) Oxidation State: A Pd–Br Chain with High Conductivity and Thermal Stability. Journal of the American Chemical Society, 2017, 139, 6562-6565.	13.7	39
4	Mixed Charge-Ordering State of MMX-Type Quasi-One-Dimensional Iodide-Bridged Platinum Complexes with Binary Countercations. Journal of the American Chemical Society, 2008, 130, 17668-17669.	13.7	26
5	Waterâ€Vaporâ€Induced Reversible Switching of Electronic States in an MMXâ€Type Chain Complex with Retention of Single Crystallinity. Angewandte Chemie - International Edition, 2010, 49, 552-555.	13.8	23
6	Electron-Conductive Metal–Organic Framework, Fe(dhbq)(dhbq = 2,5-Dihydroxy-1,4-benzoquinone): Coexistence of Microporosity and Solid-State Redox Activity. ACS Applied Materials & Diterfaces, 2021, 13, 38188-38193.	8.0	21
7	Emergence of electrical conductivity in a flexible coordination polymer by using chemical reduction. Chemical Communications, 2020, 56, 8619-8622.	4.1	19
8	Negative Differential Resistance in MX- and MMX-Type lodide-Bridged Platinum Complexes. Inorganic Chemistry, 2013, 52, 13812-13814.	4.0	18
9	Recent Progress in MMX-Chain Complexes: Unique Electronic States and Characteristics Developed by Introducing Binary Countercations. Chemistry Letters, 2014, 43, 69-79.	1.3	18
10	Optically Visible Phase Separation between Mott-Hubbard and Charge-Density-Wave Domains in a Pd-Br Chain Complex. ChemistrySelect, 2016, 1, 259-263.	1.5	18
11	Charge-bistable Pd(<scp>iii</scp>)/Pd(<scp>ii</scp> , <scp>iv</scp>) coordination polymers: phase transitions and their applications to optical properties. Dalton Transactions, 2015, 44, 8590-8599.	3.3	17
12	Direct Observation of Ordered Highâ€Spin–Lowâ€Spin Intermediate States of an Iron(III) Threeâ€Step Spinâ€Crossover Complex. Angewandte Chemie, 2016, 128, 5270-5275.	2.0	17
13	Photoresponsive Nanosheets of Polyoxometalates Formed by Controlled Selfâ€Assembly Pathways. Angewandte Chemie, 2017, 129, 3020-3024.	2.0	17
14	Smallest Optical Gap for Pt(II)–Pt(IV) Mixed-Valence Pt–Cl and Pt–Br Chain Complexes Achieved by Using a Multiple-Hydrogen-Bond Approach. Inorganic Chemistry, 2019, 58, 114-120.	4.0	15
15	Macro- and atomic-scale observations of a one-dimensional heterojunction in a nickel and palladium nanowire complex. Nature Communications, 2022, 13, 1188.	12.8	15
16	Versatile Vapochromic Behavior Accompanied by a Phase Change between Charge-Polarization State and Charge-Density-Wave State in a Quasi-One-Dimensional lodo-Bridged Dinuclear Platinum Mixed-Valence Compound, [{NH3(CH2)5NH3}2][Pt2(pop)4l]·4H2O. Bulletin of the Chemical Society of Japan, 2006, 79, 1404-1406.	3.2	14
17	Direct Synthesis and Crystal Structure of Dehydrated State in Vapochromic MMX-type Quasi-One-Dimensional Iodide-Bridged Platinum Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 85-90.	3.7	14
18	Controlling the Electronic States and Physical Properties of MMX-Type Diplatinum-lodide Chain Complexes via Binary Countercations. Inorganic Chemistry, 2012, 51, 9967-9977.	4.0	13

#	Article	IF	CITATIONS
19	Simultaneous Spinâ€Crossover Transition and Conductivity Switching in a Dinuclear Iron(II) Coordination Compound Based on 7,7′,8,8′â€Tetracyano―p â€quinodimethane. Chemistry - A European Journal, 2020, 26, 1278-1285.	3.3	12
20	Preliminary chemical reduction for synthesizing a stable porous molecular conductor with neutral metal nodes. Chemical Communications, 2020, 56, 13109-13112.	4.1	12
21	MX-Chain Compounds with ReO ₄ Counterions: Exploration of the Robin–Day Class I–II Boundary. Inorganic Chemistry, 2018, 57, 3775-3781.	4.0	11
22	Organic–Inorganic Hybrid Gold Halide Perovskites: Structural Diversity through Cation Size. Chemistry - A European Journal, 2019, 25, 9885-9891.	3.3	11
23	Threeâ€Dimensionally Ordered CDW State in Quasiâ€Oneâ€Dimensional Iodoâ€Bridged Dinuclear Platinum Mixedâ€Valence Compounds, A ₄ [Pt ₂ 1(pop) ₄]Â <i>n</i> H ₂ 0 (A = Aromatic Ammonium) Tj	EřQq1 1	0. 78 4314 rg
24	Continuous Control of Optical Gaps in Quasi-One-Dimensional Bromide-Bridged Platinum Complexes by Utilizing Chemical Pressure. Inorganic Chemistry, 2014, 53, 11764-11769.	4.0	10
25	Water-vapor Sensitive Spin-state Switching in an Iron(III) Complex with Nucleobase Pendants Making Flexible Hydrogen-bonded Networks. Chemistry Letters, 2019, 48, 1221-1224.	1.3	10
26	Conductive zigzag Pd(iii)–Br chain complex realized by a multiple-hydrogen-bond approach. CrystEngComm, 2020, 22, 3999-4004.	2.6	10
27	An unusual Pd(<scp>iii</scp>) oxidation state in the Pd–Cl chain complex with high thermal stability and electrical conductivity. Dalton Transactions, 2021, 50, 1614-1619.	3.3	9
28	Three dimensional porous Hofmann clathrate $[M < sup > II < /sup $	4.1	8
29	An electrically conductive metallocycle: densely packed molecular hexagons with π-stacked radicals. Chemical Science, 2022, 13, 4902-4908.	7.4	8
30	Ni(III) Mott–Hubbard-like State Containing High-Spin Ni(II) in a Semiconductive Bromide-Bridged Ni-Chain Compound. Inorganic Chemistry, 2022, 61, 9504-9513.	4.0	8
31	Solid-State Electrochemistry of a Semiconducting MMX-Type Diplatinum Iodide Chain Complex. Inorganic Chemistry, 2014, 53, 4022-4028.	4.0	7
32	Novel Countercation in MMX-Type Mixed-Valence Chain Compound: Coexistence of Neutral and Protonated Amino Substituents. Polymers, 2011, 3, 1652-1661.	4.5	6
33	MX-type single chain complexes with an aromatic in-plane ligand: incorporation of aromatic interactions for stabilizing the chain structure. Dalton Transactions, 2019, 48, 7828-7834.	3.3	6
34	Elucidating 2D Chargeâ€Densityâ€Wave Atomic Structure in an MX–Chain by the 3Dâ€Î"Pair Distribution Function Method**. ChemPhysChem, 2022, 23, .	2.1	6
35	Correlation between Chemical and Physical Pressures on Charge Bistability in [Pd(en) ₂ Br](Suc-C _{<i>n</i>}) ₂ ·H ₂ O. Inorganic Chemistry, 2018, 57, 12-15.	4.0	5
36	Observation of charge bistability in quasi-one-dimensional halogen-bridged palladium complexes by X-ray absorption spectroscopy. Dalton Transactions, 2019, 48, 11628-11631.	3.3	5

#	Article	IF	CITATIONS
37	Surface Ohmic Conductivity on a Mott Insulator Based on a Oneâ€dimensional Bromideâ€bridged Nickel(III) Complex. Chemistry - an Asian Journal, 2021, 16, 2947-2951.	3.3	5
38	Bluish Hydrochromic Naphthalenediimide Salt: Change of Hydrogen-bond Interactions as the New Mechanism of Vapochromism. Chemistry Letters, 2021, 50, 1479-1482.	1.3	5
39	Structural Study of Bromideâ€Bridged Pd Chain Complex with Weak CH···O Hydrogen Bonds. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 646-651.	1.2	4
40	Bromine Vapor Induced Continuous p- to n-Type Conversion of a Semiconductive Metal–Organic Framework Cu[Cu(pdt) ₂]. Inorganic Chemistry, 2022, 61, 4414-4420.	4.0	4
41	Thermally induced electrona€ hole dissociation dynamics in quasi-one-dimensional bromo-bridged palladium(<scp>iii</scp>) Mott-insulator [Pd(en) ₂ Br](Suc-C _{<i>n</i>}) ₂ ·H ₂ O (C _{Y = dialkylsulfosuccinate; <i>n</i> = 5 and 6). Physical Chemistry Chemical}	2.8	3
42	Electronic Structure of Co ^{III} Doped Bromo-Bridged Ni Complexes, [Ni _{1â^*(i>xxx} Co <i>_x</i> (chxn) ₂ Br]Br ₂ . Inorganic Chemistry, 2008, 47, 1949-1952.	4.0	2
43	Formation of Pores and π-Stacked Columns in Benzothienobenzothiophene-based Linear Coordination Polymers. Chemistry Letters, 2019, 48, 756-759.	1.3	2
44	Simultaneous Spinâ€Crossover Transition and Conductivity Switching in a Dinuclear Iron(II) Coordination Compound Based on 7,7′,8,8′â€Tetracyano―p â€quinodimethane. Chemistry - A European Journal, 2020, 26, 1165-1165.	3.3	2
45	Synthesis, Structure and Physical Properties of (trans-TTF-py2)1.5(PF6)·EtOH: A Molecular Conductor with Weak CHâ ^{↑™} â ^{↑™} â ^{↑™} N Hydrogen Bondings. Crystals, 2020, 10, 1081.	2.2	2
46	Reversible hydrogen adsorption at room temperature using a molybdenum–dihydrogen complex in the solid state. Dalton Transactions, 2021, 50, 12630-12634.	3.3	2
47	Trimetallic Mixture of Ni(III), Pd(III) and Au(III) lons in a Molecule-Based Bromide-Bridged MX-Chain Compound. Bulletin of the Chemical Society of Japan, 2022, 95, 1032-1038.	3.2	2
48	Predominance of covalency in water-vapor-responsive MMX-type chain complexes revealed by ¹²⁹ I Mössbauer spectroscopy. Dalton Transactions, 2014, 43, 8767-8773.	3.3	1
49	Supramolecular self-assembled coordination architecture composed of a doubly bis(2-pyridyl)pyrazolate bridged dinuclear Cull complex and 7,7′,8,8′,-tetracyano-p-quinodimethanide radicals. CrystEngComm, 2020, 22, 159-163.	2.6	1
50	Interdigitated Pt–Br chains with π-stacking: an approach toward Robin–Day class I mixed valency in MX-chain complexes. Dalton Transactions, 2021, 50, 14125-14129.	3.3	1
51	Charge-density-wave Amplitude in Quasi-one-dimensional Halogen-bridged Palladium Complex, [Pd(15N-en)2Br](Suc-C5)2·H2O (Suc-C5 = Dipentylsulfosuccinate), Estimated by 15N Solid-state NMR. Chemistry Letters, 2022, 51, 281-283.	1.3	1
52	Self-assembly of Oligo(ethylene oxide)-linked Diammonium Ions with Polyoxometalates into Ordered Polyhedron Nanocrystals in Aqueous Media. Chemistry Letters, 2017, 46, 430-433.	1.3	0
53	Elucidating 2D Chargeâ€Densityâ€Wave Atomic Structure in an MX–Chain by the 3Dâ€Î"Pair Distribution Function Method. ChemPhysChem, 2022, 23, e202200120.	2.1	O
54	Syntheses, Structures, and Properties of Coordination Polymers with 2,5-Dihydroxy-1,4-Benzoquinone and 4,4′-Bipyridyl Synthesized by ⟨i⟩In Situ⟨/i⟩ Hydrolysis Method. ACS Omega, 0, , .	3.5	0