
Andre C Stiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alginate beads as a highly versatile test-sample for optoacoustic imaging. Photoacoustics, 2022, 25, 100301.	7.8	2
2	Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nature Biotechnology, 2022, 40, 598-605.	17.5	23
3	A practical guide to photoswitching optoacoustics tomography. Methods in Enzymology, 2021, 657, 365-383.	1.0	0
4	A biosensor for the direct visualization of auxin. Nature, 2021, 592, 768-772.	27.8	88
5	Croconaine-based nanoparticles enable efficient optoacoustic imaging of murine brain tumors. Photoacoustics, 2021, 22, 100263.	7.8	19
6	Functional multispectral optoacoustic tomography imaging of hepatic steatosis development in mice. EMBO Molecular Medicine, 2021, 13, e13490.	6.9	9
7	In vitro optoacoustic flowÂcytometry with light scattering referencing. Scientific Reports, 2021, 11, 2181.	3.3	6
8	Reporter gene-based optoacoustic imaging of E. coli targeted colon cancer in vivo. Scientific Reports, 2021, 11, 24430.	3.3	8
9	Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins. Science Advances, 2020, 6, eaaz6293.	10.3	27
10	Challenging a Preconception: Optoacoustic Spectrum Differs from the Optical Absorption Spectrum of Proteins and Dyes for Molecular Imaging. Analytical Chemistry, 2020, 92, 10717-10724.	6.5	26
11	Deep tissue volumetric optoacoustic tracking of individual circulating tumor cells in an intracardially perfused mouse model. Neoplasia, 2020, 22, 441-446.	5.3	11
12	Structure-Based Mutagenesis of Phycobiliprotein smURFP for Optoacoustic Imaging. ACS Chemical Biology, 2019, 14, 1896-1903.	3.4	15
13	Bioengineered bacterial vesicles as biological nano-heaters for optoacoustic imaging. Nature Communications, 2019, 10, 1114.	12.8	128
14	Phototrophic purple bacteria as optoacoustic in vivo reporters of macrophage activity. Nature Communications, 2019, 10, 1191.	12.8	22
15	Photocontrollable Proteins for Optoacoustic Imaging. Analytical Chemistry, 2019, 91, 5470-5477.	6.5	14
16	Homogentisic acid-derived pigment as a biocompatible label for optoacoustic imaging of macrophages. Nature Communications, 2019, 10, 5056.	12.8	13
17	Amplification of photoacoustic effect in bimodal polymer particles by self-quenching of indocyanine green. Biomedical Optics Express, 2019, 10, 4775.	2.9	28
18	Crystal structure of a biliverdin-bound phycobiliprotein: Interdependence of oligomerization and chromophorylation. Journal of Structural Biology, 2018, 204, 519-522.	2.8	12

ANDRE C STIEL

#	Article	IF	CITATIONS
19	Characterization of Reversibly Switchable Fluorescent Proteins in Optoacoustic Imaging. Analytical Chemistry, 2018, 90, 10527-10535.	6.5	24
20	PocketOptimizer and the Design of Ligand Binding Sites. Methods in Molecular Biology, 2016, 1414, 63-75.	0.9	10
21	Imaging the distribution of photoswitchable probes with temporally-unmixed multispectral optoacoustic tomography. Proceedings of SPIE, 2016, , .	0.8	1
22	Light fluence estimation by imaging photoswitchable probes with temporally unmixed multispectral optoacoustic tomography. , 2016, , .		1
23	Light fluence normalization in turbid tissues via temporally unmixed multispectral optoacoustic tomography. Optics Letters, 2015, 40, 4691.	3.3	28
24	High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Optics Letters, 2015, 40, 367.	3.3	57
25	Identification of Protein Scaffolds for Enzyme Design Using Scaffold Selection. Methods in Molecular Biology, 2014, 1216, 183-196.	0.9	3
26	Two olor RESOLFT Nanoscopy with Green and Red Fluorescent Photochromic Proteins. ChemPhysChem, 2014, 15, 655-663.	2.1	53
27	Dual-Label STED Nanoscopy of Living Cells Using Photochromism. Nano Letters, 2011, 11, 3970-3973.	9.1	56
28	A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nature Biotechnology, 2011, 29, 942-947.	17.5	254
29	Molecular Basis of the Light-driven Switching of the Photochromic Fluorescent Protein Padron. Journal of Biological Chemistry, 2010, 285, 14603-14609.	3.4	65
30	Generation of Monomeric Reversibly Switchable Red Fluorescent Proteins for Far-Field Fluorescence Nanoscopy. Biophysical Journal, 2008, 95, 2989-2997.	0.5	149
31	Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature Biotechnology, 2008, 26, 1035-1040.	17.5	284
32	Nanoscale separation of molecular species based on their rotational mobility. Optics Express, 2008, 16, 21093.	3.4	36
33	1.8 Ã bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochemical Journal, 2007, 402, 35-42.	3.7	228
34	Structural basis for reversible photoswitching in Dronpa. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13005-13009.	7.1	250
35	Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters. Biophysical Journal, 2007, 93, 3285-3290.	0.5	261
36	Reversible photoswitching enables singleâ€molecule fluorescence fluctuation spectroscopy at high molecular concentration. Microscopy Research and Technique, 2007, 70, 1003-1009.	2.2	26

#	Article	IF	CITATIONS
37	Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13070-13074.	7.1	253