Thais Lomonaco Teodoro da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1761063/publications.pdf

Version: 2024-02-01

567144 477173 32 890 15 29 citations h-index g-index papers 32 32 32 1229 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 2014, 156, 362-368.	4.2	393
2	Sensory and Technological Evaluation of Margarines With Reduced Saturated Fatty Acid Contents Using Oleogel Technology. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 673-685.	0.8	63
3	Physical Properties of Candelilla Wax, Monoacylglycerols, and Fully Hydrogenated Oil Oleogels. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 797-811.	0.8	54
4	Interactions between candelilla wax and saturated triacylglycerols in oleogels. Food Research International, 2019, 121, 900-909.	2.9	39
5	Effect of Water Addition on Physical Properties of Emulsion Gels. Food Biophysics, 2019, 14, 30-40.	1.4	31
6	Use of Highâ€Intensity Ultrasound to Change the Physical Properties of Oleogels and Emulsion Gels. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 681-691.	0.8	30
7	On the quantitative phase analysis and amorphous content of triacylglycerols materials by X-ray Rietveld method. Chemistry and Physics of Lipids, 2018, 212, 51-60.	1.5	26
8	Equivalence salting and temporal dominance of sensations analysis for different sodium chloride substitutes in cream cheese. International Journal of Dairy Technology, 2014, 67, 31-38.	1.3	25
9	Multivariate Approaches for Optimization of the Acceptance: Optimization of a <scp>B</scp> razilian <scp>C</scp> errado Fruit Jam Using <scp>M</scp> ixture <scp>D</scp> esign and <scp>P</scp> arallel <scp>F</scp> actor <scp>A</scp> nalysis. Journal of Sensory Studies, 2012, 27, 417-424.	0.8	24
10	Effect of highâ€intensity ultrasound on the oleogelation and physical properties of high melting point monoglycerides and triglycerides oleogels. Journal of Food Science, 2021, 86, 343-356.	1.5	20
11	Influence of processing on the antioxidant capacity and bioactive compounds in jellies from different blackberry cultivars. International Journal of Food Science and Technology, 2015, 50, 1658-1665.	1.3	19
12	Tailoring Crystalline Structure Using Highâ€Intensity Ultrasound to Reduce Oil Migration in a Low Saturated Fat. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 141-155.	0.8	19
13	Crystallinity properties and crystallization behavior of chocolate fat blends. Journal of Food Science and Technology, 2017, 54, 1979-1989.	1.4	18
14	Structural characteristics of crystals formed in palm oil using sorbitan tristearate and sucrose stearate. International Journal of Food Properties, 2018, 21, 618-632.	1.3	17
15	Sucrose behenate as a crystallization enhancer for soft fats. Food Chemistry, 2016, 192, 972-978.	4.2	16
16	Temperature, time and fat composition effect on fat bloom formation in dark chocolate. Food Structure, 2017, 14, 68-75.	2.3	12
17	Sonocrystallization as a tool to reduce oil migration by changing physical properties of a palm kernel fat. Journal of Food Science, 2020, 85, 964-971.	1.5	12
18	Crystallization of interesterified soybean oil using a scraped surface heat exchanger with high intensity ultrasound. Journal of Food Engineering, 2019, 263, 341-347.	2.7	9

#	Article	IF	CITATIONS
19	Templating effects of dipalmitin on soft palm mid-fraction crystals. International Journal of Food Properties, 2017, 20, 935-947.	1.3	8
20	Incorporation of high intensity ultrasound (HIU) to a scraped surface heat exchanger: Effect of HIU position. Journal of Food Engineering, 2020, 274, 109824.	2.7	8
21	Development of reduced saturated fat cookie fillings using multicomponent oleogels. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 1069-1082.	0.8	8
22	Palm-based fat crystallized at different temperatures with and without high-intensity ultrasound in batch and in a scraped surface heat exchanger. LWT - Food Science and Technology, 2021, 138, 110593.	2.5	7
23	Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties. Food Research International, 2022, 154, 110997.	2.9	7
24	Effect of processing conditions as highâ€intensity ultrasound, agitation, and cooling temperature on the physical properties of a low saturated fat. Journal of Food Science, 2020, 85, 3380-3390.	1.5	6
25	Numerical modeling of wear behavior of solid fats. Journal of Food Engineering, 2019, 260, 12-21.	2.7	5
26	Sonocrystallization of a Palmâ€Based Fat with Low Level of Saturation in a Scraped Surface Heat Exchanger. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 1253-1264.	0.8	5
27	Influence of sonication, temperature, and agitation, on the physical properties of a palm-based fat crystallized in a continuous system. Ultrasonics Sonochemistry, 2021, 74, 105550.	3.8	4
28	High-intensity Ultrasound as a Tool to Form Water in Oleogels Emulsions Structured by Lipids Oleogelators. Food Biophysics, 2022, 17, 361-374.	1.4	3
29	Chemical Composition and Nutritional Information of Fats Used in Fillings of Sandwich Cookies. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1173-1179.	0.8	2
30	Effect of cocoa butter equivalent on cocoa butter crystallization behavior and on dark chocolate. Brazilian Journal of Food Research, 2019, 10, 149.	0.0	0
31	Physicochemical characterization of shortenings recommended for application in cookie filling. Brazilian Journal of Food Research, 2019, 10, 29.	0.0	0
32	The combination of monoglycerides, wax and hardfat on oleogels structuration. Brazilian Journal of Food Technology, 0, 25, .	0.8	0