Takeji Sakae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1760722/publications.pdf

Version: 2024-02-01

567281 610901 49 651 15 24 citations h-index g-index papers 54 54 54 875 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Olfactory Sensations During Proton and Photon Radiotherapy: A Multicenter Prospective Observational Study. Cureus, 2022, 14, e22964.	0.5	5
2	Detection of anatomical changes using twoâ€dimensional xâ€ray images for head and neck adaptive radiotherapy. Medical Physics, 2022, , .	3.0	2
3	Analysis of diaphragm movements to specify geometric uncertainties of respiratory gating near end-exhalation for irradiation fields involving the liver dome. Radiotherapy and Oncology, 2022, 171, 146-154.	0.6	1
4	Weight-loss-independent benefits of exercise on liver steatosis and stiffness in Japanese men with NAFLD. JHEP Reports, 2021, 3, 100253.	4.9	28
5	Development of a tracking error prediction system for the CyberKnife Synchrony Respiratory Tracking System with use of support vector regression. Medical and Biological Engineering and Computing, 2021, 59, 2409-2418.	2.8	3
6	Capacity of proton beams in preserving normal liver tissue during proton beam therapy for hepatocellular carcinoma. Journal of Radiation Research, 2021, 62, 133-141.	1.6	0
7	The A Body Shape Index Might Be a Stronger Predictor of Chronic Kidney Disease Than BMI in a Senior Population. International Journal of Environmental Research and Public Health, 2021, 18, 12874.	2.6	11
8	Changes in skeletal muscle diffusion parameters owing to intramyocellular lipid. Magnetic Resonance Imaging, 2020, 73, 70-75.	1.8	1
9	Cardiorespiratory fitness is strongly linked to metabolic syndrome among physical fitness components: a retrospective cross-sectional study. Journal of Physiological Anthropology, 2020, 39, 30.	2.6	10
10	Verification for dose estimation performance of a Monte-Carlo based treatment planning system in University of Tsukuba. Applied Radiation and Isotopes, 2020, 166, 109222.	1.5	14
11	Evaluation of the characteristics of the neutron beam of a linac-based neutron source for boron neutron capture therapy. Applied Radiation and Isotopes, 2020, 165, 109246.	1.5	11
12	Relationships of Fat and Muscle Mass with Chronic Kidney Disease in Older Adults: A Cross-Sectional Pilot Study. International Journal of Environmental Research and Public Health, 2020, 17, 9124.	2.6	10
13	Monitoring patient movement with boron neutron capture therapy and motion capture technology. Applied Radiation and Isotopes, 2020, 163, 109208.	1.5	4
14	Computational evaluation of dose distribution for BNCT treatment combined with X-ray therapy or proton beam therapy. Applied Radiation and Isotopes, 2020, 165, 109295.	1.5	2
15	Evaluation of dose distribution and normal tissue complication probability of a combined dose of cone-beam computed tomography imaging with treatment in prostate intensity-modulated radiation therapy. Journal of Medical Physics, 2020, 45, 78.	0.3	1
16	3Dâ€printable lung phantom for distal falloff verification of proton Bragg peak. Journal of Applied Clinical Medical Physics, 2019, 20, 86-94.	1.9	5
17	Beam performance of the iBNCT as a compact linac-based BNCT neutron source developed by University of tsukuba. AIP Conference Proceedings, 2019, , .	0.4	7
18	DIFFERENCE IN DEGREE OF SUB-LETHAL DAMAGE RECOVERY BETWEEN CLINICAL PROTON BEAMS AND X-RAYS. Radiation Protection Dosimetry, 2019, 183, 93-97.	0.8	4

#	Article	IF	Citations
19	Biomoleculeâ€Assisted Synthesis of Hierarchical Multilayered Boehmite and Alumina Nanosheets for Enhanced Molybdenum Adsorption. Chemistry - A European Journal, 2019, 25, 4843-4855.	3.3	16
20	Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy. Journal of Radiation Research, 2018, 59, 91-99.	1.6	65
21	Development of LINAC-Based Neutron Source for Boron Neutron Capture Therapy in University of Tsukuba. Plasma and Fusion Research, 2018, 13, 2406006-2406006.	0.7	24
22	DEVELOPMENT OF A MULTIMODAL MONTE CARLO BASED TREATMENT PLANNING SYSTEM. Radiation Protection Dosimetry, 2018, 180, 286-290.	0.8	13
23	Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy. Radiological Physics and Technology, 2018, 11, 43-53.	1.9	26
24	Molybdenum Adsorption Properties of Alumina-Embedded Mesoporous Silica for Medical Radioisotope Production. Bulletin of the Chemical Society of Japan, 2018, 91, 195-200.	3.2	42
25	General ion recombination effect in a liquid ionization chamber in high-dose-rate pulsed photon and electron beams. Journal of Radiation Research, 2018, 59, 282-285.	1.6	2
26	Response to "Comments on â€~Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopyâ€â€™. Radiological Physics and Technology, 2018, 11, 362-363.	1.9	1
27	Demonstration of BSS Unfolding Method for BNCT Neutron Field and Development of New BSS using Li-glass Scintillators coupled with Current-mode-operated PMTs for Intense Neutron Field., 2018,,.		0
28	Templateâ€Free Fabrication of Mesoporous Alumina Nanospheres Using Postâ€Synthesis Waterâ€Ethanol Treatment of Monodispersed Aluminium Glycerate Nanospheres for Molybdenum Adsorption. Small, 2018, 14, e1800474.	10.0	50
29	Histone Deacetylase Inhibitor Induced Radiation Sensitization Effects on Human Cancer Cells after Photon and Hadron Radiation Exposure. International Journal of Molecular Sciences, 2018, 19, 496.	4.1	26
30	An infrared interactive patient position guidance and acquisition control system for use during radiotherapy treatment. Journal of Radiotherapy in Practice, 2017, 16, 303-310.	0.5	1
31	Neutron spectral fluence measurements using a Bonner sphere spectrometer in the development of the iBNCT accelerator-based neutron source. Applied Radiation and Isotopes, 2017, 127, 47-51.	1.5	26
32	Mesoporous Alumina as an Effective Adsorbent for Molybdenum (Mo) toward Instant Production of Radioisotope for Medical Use. Bulletin of the Chemical Society of Japan, 2017, 90, 1174-1179.	3.2	49
33	Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy. Physica Medica, 2016, 32, 1846-1851.	0.7	9
34	Dual ring multilayer ionization chamber and theoryâ€based correction technique for scanning proton therapy. Medical Physics, 2016, 43, 4150-4162.	3.0	5
35	Note: Utilization of polymer gel as a bolus compensator and a dosimeter in the near-surface buildup region for breast-conserving therapy. Review of Scientific Instruments, 2015, 86, 096103.	1.3	7
36	Whole-body dose evaluation with an adaptive treatment planning system for boron neutron capture therapy. Radiation Protection Dosimetry, 2015, 167, 584-590.	0.8	8

#	Article	IF	CITATIONS
37	Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model. Journal of Radiation Research, 2015, 56, 382-390.	1.6	24
38	Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy. Applied Radiation and Isotopes, 2015, 106, 78-83.	1.5	25
39	Verification of nuclear data for the Tsukuba plan, a newly developed treatment planning system for boron neutron capture therapy. Applied Radiation and Isotopes, 2015, 106, 111-115.	1.5	9
40	Dose distribution resulting from changes in aeration of nasal cavity or paranasal sinus cancer in the proton therapy. Radiotherapy and Oncology, 2014, 113, 72-76.	0.6	30
41	RBE and OER within the spread-out Bragg peak for proton beam therapy: in vitro study at the Proton Medical Research Center at the University of Tsukuba. Journal of Radiation Research, 2014, 55, 1028-1032.	1.6	21
42	Relative biological effectiveness of therapeutic proton beams for HSG cells at Japanese proton therapy facilities. Journal of Radiation Research, 2014, 55, 812-815.	1.6	11
43	Aggressive proton beam therapy followed by liver transplantation for a patient with large HCC with portal vein tumor thrombus. International Cancer Conference Journal, 2013, 2, 41-44.	0.5	0
44	Technical Considerations for Noncoplanar Proton-Beam Therapy of Patients with Tumors Proximal to the Optic Nerve. Strahlentherapie Und Onkologie, 2010, 186, 36-39.	2.0	14
45	A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard Fields. Journal of Nuclear Science and Technology, 2007, 44, 109-113.	1.3	3
46	A Correction Factor for Effects of Scattered X-rays at Calibration of Ionization Chambers in Low Energy X-ray Standard Fields. Journal of Nuclear Science and Technology, 2007, 44, 109-113.	1.3	2
47	Modeling of daily operation in proton radiotherapy by Monte Carlo method. Igaku Butsuri: Nihon Igaku Butsuri Gakkai Kikanshi = Japanese Journal of Medical Physics: an Official Journal of Japan Society of Medical Physics, 2003, 23, 147-56.	0.0	0
48	Continuum Spectra in One-nucleon Transfer Reactions â€"(p, d) Reactions at Medium Energy Regionâ€". Journal of Nuclear Science and Technology, 2002, 39, 377-380.	1.3	3
49	Multi-layer energy filter for realizing conformal irradiation in charged particle therapy. Medical Physics, 2000, 27, 368-373.	3.0	19