
Cheryl J Briggs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1760611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging fungal threats to animal, plant and ecosystem health. Nature, 2012, 484, 186-194.	13.7	2,478
2	Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the United States of America, 2010, 107, 9689-9694.	3.3	530
3	Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME Journal, 2009, 3, 818-824.	4.4	478
4	Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9695-9700.	3.3	426
5	Should we expect population thresholds for wildlife disease?. Trends in Ecology and Evolution, 2005, 20, 511-519.	4.2	403
6	The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and Evolution, 2010, 25, 109-118.	4.2	380
7	WHY DO POPULATIONS CYCLE? A SYNTHESIS OF STATISTICAL AND MECHANISTIC MODELING APPROACHES. Ecology, 1999, 80, 1789-1805.	1.5	300
8	The pathogen <i>Batrachochytrium dendrobatidis</i> disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5049-58.	3.3	264
9	EMERGING INFECTIOUS DISEASE AS A PROXIMATE CAUSE OF AMPHIBIAN MASS MORTALITY. Ecology, 2006, 87, 1671-1683.	1.5	256
10	Stabilizing effects in spatial parasitoid–host and predator–prey models: a review. Theoretical Population Biology, 2004, 65, 299-315.	0.5	254
11	Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biological Conservation, 2007, 138, 390-398.	1.9	241
12	Theory for Biological Control: Recent Developments. Ecology, 1996, 77, 2001-2013.	1.5	239
13	Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9385-9390.	3.3	238
14	QUANTIFYING VARIATION IN THE STRENGTHS OF SPECIES INTERACTIONS. Ecology, 1999, 80, 2206-2224.	1.5	220
15	The Novel and Endemic Pathogen Hypotheses: Competing Explanations for the Origin of Emerging Infectious Diseases of Wildlife. Conservation Biology, 2005, 19, 1441-1448.	2.4	208
16	LIFE-HISTORY TRADE-OFFS INFLUENCE DISEASE IN CHANGING CLIMATES: STRATEGIES OF AN AMPHIBIAN PATHOGEN. Ecology, 2008, 89, 1627-1639.	1.5	206
17	Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Frontiers in Zoology, 2011, 8, 8.	0.9	197
18	Competition Among Parasitoid Species on a Stage-Structured Host and Its Effect on Host Suppression. American Naturalist, 1993, 141, 372-397.	1.0	187

#	Article	IF	CITATIONS
19	Habitat structure and population persistence in an experimental community. Nature, 2001, 412, 538-543.	13.7	187
20	Population genetics of the frog-killing fungus <i>Batrachochytrium dendrobatidis</i> . Proceedings of the United States of America, 2007, 104, 13845-13850.	3.3	156
21	INVESTIGATING THE POPULATION-LEVEL EFFECTS OF CHYTRIDIOMYCOSIS: AN EMERGING INFECTIOUS DISEASE OF AMPHIBIANS. Ecology, 2005, 86, 3149-3159.	1.5	154
22	Contextâ€dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment, 2015, 13, 195-202.	1.9	147
23	Consumer-Resource Dynamics (MPB-36). , 2013, , .		138
24	Spatial Dynamics of Lyme Disease: A Review. EcoHealth, 2008, 5, 167-195.	0.9	137
25	DYNAMICAL EFFECTS OF PLANT QUALITY AND PARASITISM ON POPULATION CYCLES OF LARCH BUDMOTH. Ecology, 2003, 84, 1207-1214.	1.5	130
26	Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11889-11894.	3.3	129
27	Aggregation and Stability in Metapopulation Models. American Naturalist, 1992, 140, 41-58.	1.0	119
28	WHY SHORT-TERM EXPERIMENTS MAY NOT ALLOW LONG-TERM PREDICTIONS ABOUT INTRAGUILD PREDATION. , 2005, 15, 1111-1117.		115
29	Quantifying the disease transmission function: effects of density on Batrachochytrium dendrobatidis transmission in the mountain yellow-legged frog Rana muscosa. Journal of Animal Ecology, 2007, 76, 711-721.	1.3	110
30	Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Scientific Reports, 2018, 8, 7338.	1.6	106
31	Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Developmental and Comparative Immunology, 2006, 30, 831-842.	1.0	99
32	Host Suppression and Stability in a Parasitoid-Host System: Experimental Demonstration. Science, 2005, 309, 610-613.	6.0	90
33	Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Diseases of Aquatic Organisms, 2012, 98, 11-25.	0.5	87
34	A general consumer-resource population model. Science, 2015, 349, 854-857.	6.0	86
35	Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20382-20387.	3.3	86
36	Competitive Displacement and Biological Control in Parasitoids: A Model. American Naturalist, 1996, 148, 807-826.	1.0	85

#	Article	IF	CITATIONS
37	Temperature alters reproductive life history patterns in <i>Batrachochytrium dendrobatidis</i> , a lethal pathogen associated with the global loss of amphibians. Ecology and Evolution, 2012, 2, 2241-2249.	0.8	79
38	Effect of Temperature on Host Response to Batrachochytrium dendrobatidis Infection in the Mountain Yellow-legged Frog (Rana muscosa). Journal of Wildlife Diseases, 2008, 44, 716-720.	0.3	76
39	Is Chytridiomycosis an Emerging Infectious Disease in Asia?. PLoS ONE, 2011, 6, e23179.	1.1	76
40	Trophic supplements to intraguild predation. Oikos, 2007, 116, 662-677.	1.2	75
41	Testing intraguild predation theory in a field system: does numerical dominance shift along a gradient of productivity?. Ecology Letters, 2003, 6, 929-935.	3.0	73
42	Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170944.	1.2	71
43	Using decision analysis to support proactive management of emerging infectious wildlife diseases. Frontiers in Ecology and the Environment, 2017, 15, 214-221.	1.9	69
44	Dynamical Effects of Host Size- and Parasitoid State-Dependent Attacks by Parasitoids. Journal of Animal Ecology, 1997, 66, 542.	1.3	63
45	Host and Aquatic Environment Shape the Amphibian Skin Microbiome but Effects on Downstream Resistance to the Pathogen Batrachochytrium dendrobatidis Are Variable. Frontiers in Microbiology, 2018, 9, 487.	1.5	63
46	Dynamical Effects of Host-Feeding in Parasitoids. Journal of Animal Ecology, 1995, 64, 403.	1.3	58
47	Testing a key assumption of hostâ€pathogen theory: density and disease transmission. Oikos, 2008, 117, 1667-1673.	1.2	57
48	POPULATION CYCLES IN THE PINE LOOPER MOTH: DYNAMICAL TESTS OF MECHANISTIC HYPOTHESES. Ecological Monographs, 2005, 75, 259-276.	2.4	56
49	Pathophysiology in Mountain Yellow-Legged Frogs (Rana muscosa) during a Chytridiomycosis Outbreak. PLoS ONE, 2012, 7, e35374.	1.1	55
50	Nowhere to hide: impact of a temperature-sensitive amphibian pathogen along an elevation gradient in the temperate zone. Ecosphere, 2011, 2, art93.	1.0	53
51	Extreme drought, host density, sex, and bullfrogs influence fungal pathogen infection in a declining lotic amphibian. Ecosphere, 2017, 8, e01740.	1.0	53
52	Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a loadâ€dependent amphibian disease. Ecology Letters, 2017, 20, 1169-1181.	3.0	47
53	Moving Beyond Too Little, Too Late: Managing Emerging Infectious Diseases in Wild Populations Requires International Policy and Partnerships. EcoHealth, 2015, 12, 404-407.	0.9	45
54	Probiotics Modulate a Novel Amphibian Skin Defense Peptide That Is Antifungal and Facilitates Growth of Antifungal Bacteria. Microbial Ecology, 2020, 79, 192-202.	1.4	44

#	Article	IF	CITATIONS
55	PREDATORS, PARASITOIDS, AND PATHOGENS: A CROSS-CUTTING EXAMINATION OF INTRAGUILD PREDATION THEORY. Ecology, 2007, 88, 2681-2688.	1.5	42
56	Using multiâ€response models to investigate pathogen coinfections across scales: Insights from emerging diseases of amphibians. Methods in Ecology and Evolution, 2018, 9, 1109-1120.	2.2	42
57	Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecology Letters, 2021, 24, 130-148.	3.0	42
58	Modeling Virus Coinfection to Inform Management of Maize Lethal Necrosis in Kenya. Phytopathology, 2017, 107, 1095-1108.	1.1	41
59	Rapid extirpation of a North American frog coincides with an increase in fungal pathogen prevalence: Historical analysis and implications for reintroduction. Ecology and Evolution, 2017, 7, 10216-10232.	0.8	37
60	Bottom-up and top-down control of pear psylla (Cacopsylla pyricola): Fertilization, plant quality, and the efficacy of the predator Anthocoris nemoralis. Biological Control, 2007, 43, 257-264.	1.4	29
61	Lyme disease risk in southern California: abiotic and environmental drivers of Ixodes pacificus (Acari:) Tj ETQq1 1	0.784314 1.0	rgBT /Overlo
62	Experimental evolution alters the rate and temporal pattern of population growth in <i>Batrachochytrium dendrobatidis</i> , a lethal fungal pathogen of amphibians. Ecology and Evolution, 2014, 4, 3633-3641.	0.8	28
63	Integral Projection Models for host–parasite systems with an application to amphibian chytrid fungus. Methods in Ecology and Evolution, 2016, 7, 1182-1194.	2.2	28
64	The window of vulnerability and its effect on relative parasitoid abundance. Ecological Entomology, 1996, 21, 128-140.	1.1	27
65	Macroalgae size refuge from herbivory promotes alternative stable states on coral reefs. PLoS ONE, 2018, 13, e0202273.	1.1	27
66	Truncated seasonal activity patterns of the western blacklegged tick (Ixodes pacificus) in central and southern California. Ticks and Tick-borne Diseases, 2016, 7, 234-242.	1.1	25
67	The effect of dispersal on the population dynamics of a gall-forming midge and its parasitoids. Journal of Animal Ecology, 2000, 69, 96-105.	1.3	24
68	Autoparasitism, Interference, and Parasitoid-Pest Population Dynamics. Theoretical Population Biology, 2001, 60, 33-57.	0.5	24
69	Of poisons and parasites—the defensive role of tetrodotoxin against infections in newts. Journal of Animal Ecology, 2018, 87, 1192-1204.	1.3	24
70	Risk of vector tick exposure initially increases, then declines through time in response to wildfire in California. Ecosphere, 2018, 9, e02227.	1.0	19
71	Two-Patch Metapopulation Dynamics. Lecture Notes in Biomathematics, 1993, , 125-135.	0.3	19
72	DNA Extraction Method Affects the Detection of a Fungal Pathogen in Formalin-Fixed Specimens Using qPCR. PLoS ONE, 2015, 10, e0135389.	1.1	18

#	Article	IF	CITATIONS
73	Disease hotspots or hot species? Infection dynamics in multiâ€host metacommunities controlled by species identity, not source location. Ecology Letters, 2020, 23, 1201-1211.	3.0	18
74	Dispersal and foraging behaviour ofPlatygaster californica: hosts can't run, but they can hide. Ecological Entomology, 2006, 31, 298-306.	1.1	17
75	Detecting and quantifying parasite-induced host mortality from intensity data: method comparisons and limitations. International Journal for Parasitology, 2016, 46, 59-66.	1.3	17
76	Inferring Colonization Processes from Population Dynamics in Spatially Structured Predator-Prey Systems. Ecology, 2000, 81, 3350.	1.5	16
77	Delayed feedback and multiple attractors in a host-parasitoid system. Journal of Mathematical Biology, 1999, 38, 317-345.	0.8	15
78	The influence of landscape and environmental factors on ranavirus epidemiology in a California amphibian assemblage. Freshwater Biology, 2018, 63, 639-651.	1.2	15
79	Pathogen invasion history elucidates contemporary host pathogen dynamics. PLoS ONE, 2019, 14, e0219981.	1.1	15
80	Interactions between the egg and larval parasitoids of a gall-forming midge and their impact on the host. Ecological Entomology, 2001, 26, 109-116.	1.1	14
81	Factors Affecting Distribution of the Gall Forming Midge Rhopalomyia californica (Diptera:) Tj ETQq1 1 0.784314	FrgBT /Ove	erlogk 10 Tf 5
82	Using stochastic epidemiological models to evaluate conservation strategies for endangered amphibians. Journal of the Royal Society Interface, 2017, 14, 20170480.	1.5	13
83	Disease's hidden death toll: Using parasite aggregation patterns to quantify landscapeâ€level host mortality in a wildlife system. Journal of Animal Ecology, 2020, 89, 2876-2887.	1.3	12
84	Occurrence of Batrachochytrium dendrobatidis in anurans of the Mediterranean region of Baja California, México. Diseases of Aquatic Organisms, 2018, 127, 193-200.	0.5	12
85	Recent developments in theory for biological control of insect pests by parasitoids. , 1999, , 22-42.		11
86	Conservation decisions under pressure: Lessons from an exercise in rapid response to wildlife disease. Conservation Science and Practice, 2020, 2, e141.	0.9	11
87	Fungal infection alters the selection, dispersal and drift processes structuring the amphibian skin microbiome. Ecology Letters, 2020, 23, 88-98.	3.0	10
88	Divergent regional evolutionary histories of a devastating global amphibian pathogen. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210782.	1.2	10
89	Effectiveness of antifungal treatments during chytridiomycosis epizootics in populations of an endangered frog. PeerJ, 2022, 10, e12712.	0.9	10
90	Parameter inference for an individual based model of chytridiomycosis in frogs. Journal of Theoretical Biology, 2011, 277, 90-98.	0.8	9

#	Article	IF	CITATIONS
91	Mountain Yellow-legged Frogs (<i>Rana muscosa</i>) did not Produce Detectable Antibodies in Immunization Experiments with <i>Batrachochytrium dendrobatidis</i> . Journal of Wildlife Diseases, 2016, 52, 154-158.	0.3	9
92	Putative resistance and tolerance mechanisms have little impact on disease progression for an emerging salamander pathogen. Functional Ecology, 2021, 35, 847-859.	1.7	8
93	INFERRING COLONIZATION PROCESSES FROM POPULATION DYNAMICS IN SPATIALLY STRUCTURED PREDATOR–PREY SYSTEMS. Ecology, 2000, 81, 3350-3361.	1.5	7
94	Once a reservoir, always a reservoir? Seasonality affects the pathogen maintenance potential of amphibian hosts. Ecology, 2022, , e3759.	1.5	7
95	Spatial dynamics of measles epidemics. Trends in Ecology and Evolution, 2002, 17, 399-401.	4.2	6
96	Shared behavioral responses and predation risk of anuran larvae and adults exposed to a novel predator. Biological Invasions, 2018, 20, 475-485.	1.2	6
97	Multiple Sources of Isotopic Variation in a Terrestrial Arthropod Community: Challenges for Disentangling Food Webs. Environmental Entomology, 2007, 36, 776-791.	0.7	5
98	Declines and extinctions of mountain yellowâ€legged frogs have small effects on benthic macroinvertebrate communities. Ecosphere, 2016, 7, e01327.	1.0	4
99	Investigating the potential use of an ionic liquid (1-Butyl-1-methylpyrrolidinium) Tj ETQq1 1 0.784314 rgBT /Over Batrachochytrium dendrobatidis. PLoS ONE, 2020, 15, e0231811.	ock 10 Tf 1.1	50 427 Td (b 4
100	When chytrid fungus invades: integrating theory and data to understand disease-induced amphibian declines. , 2019, , 511-543.		3
101	Stepping into the past to conserve the future: Archived skin swabs from extant and extirpated populations inform genetic management of an endangered amphibian. Molecular Ecology, 2020, 29, 2598-2611.	2.0	3
102	Integrating infection intensity into within- and between-host pathogen dynamics: implications for invasion and virulence evolution. American Naturalist, 2021, 198, 661-677.	1.0	3
103	A time-since-infection model for populations with two pathogens. Theoretical Population Biology, 2022, 144, 1-12.	0.5	3
104	Invasive African clawed frogs in California: A reservoir for or predator against the chytrid fungus?. PLoS ONE, 2018, 13, e0191537.	1.1	2
105	EMERGING INFECTIOUS DISEASE AS A PROXIMATE CAUSE OF AMPHIBIAN MASS MORTALITY., 2006, 87, 1671.		2
106	High fungal pathogen loads and prevalence in Baja California amphibian communities: The importance of species, elevation, and historical context. Global Ecology and Conservation, 2022, 33, e01968.	1.0	2
107	The dynamics of insect–pathogen interactions. , 1999, , 307-326.		1
108	II.8 Host–Parasitoid Interactions. , 2009, , 213-219.		1

II.8 Hostâ€"Parasitoid Interactions. , 2009, , 213-219. 108