Theo Siegrist

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/176040/theo-siegrist-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

307	23,775 citations	74	149
papers		h-index	g-index
348	25,309	8.2	6.34
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
307	Momentum-space signatures of Berry flux monopoles in the Weyl semimetal TaAs. <i>Nature Communications</i> , 2021 , 12, 3650	17.4	2
306	Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor. <i>Science Advances</i> , 2021 , 7,	14.3	1
305	Metal Halide Scaffolded Assemblies of Organic Molecules with Enhanced Emission and Room Temperature Phosphorescence. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8229-8236	6.4	5
304	Disorder-induced Anderson-like localization for bidimensional thermoelectrics optimization. <i>Matter</i> , 2021 , 4, 2970-2984	12.7	3
303	Understanding the effect of light and temperature on the optical properties and stability of mixed-ion halide perovskites. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9714-9723	7.1	10
302	Bulk Assembly of Multicomponent Zero-Dimensional Metal Halides with Dual Emission 2020 , 2, 376-38	0	36
301	Quantum Critical Point in the Itinerant Ferromagnet Ni_{1-x}Rh_{x}. <i>Physical Review Letters</i> , 2020 , 124, 117203	7.4	6
300	Evidence for undoped Weyl semimetal charge transport in YIrO. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 02LT01	1.8	4
299	Bulk Assemblies of Lead Bromide Trimer Clusters with Geometry-Dependent Photophysical Properties. <i>Chemistry of Materials</i> , 2020 , 32, 374-380	9.6	33
298	Superstructures and Superconductivity Linked with Pd Intercalation in Nb2PdxSe5. <i>Chemistry of Materials</i> , 2020 , 32, 8361-8366	9.6	О
297	Disorder and slowing magnetic dynamics in (BEDT II TF)2Hg(SCN)2Br. <i>Physical Review B</i> , 2020 , 102,	3.3	2
296	Order-disorder transition in the $S = \square$ kagome antiferromagnets claringbullite and barlowite. <i>Chemical Communications</i> , 2019 , 55, 11587-11590	5.8	7
295	GrBeisen divergence near the structural quantum phase transition in ScF3. <i>Philosophical Magazine</i> , 2019 , 99, 631-643	1.6	2
294	Green Emitting Single-Crystalline Bulk Assembly of Metal Halide Clusters with Near-Unity Photoluminescence Quantum Efficiency. <i>ACS Energy Letters</i> , 2019 , 4, 1579-1583	20.1	73
293	Enhanced thermoelectric performance of heavy-fermion compounds Yb Zn (= Co, Rh, Ir) at low temperatures. <i>Science Advances</i> , 2019 , 5, eaaw6183	14.3	3
292	Bulk Assembly of Zero-Dimensional Organic Lead Bromide Hybrid with Efficient Blue Emission 2019 , 1, 594-598		52
291	BaCrNH: A New Nitride-Hydride with Trigonal Planar Cr. <i>Inorganic Chemistry</i> , 2019 , 58, 3302-3307	5.1	6

290	Microstructure of hard biocompatible Ti1\(\text{NAux alloys.} \) Materials Characterization, 2019 , 149, 133-142	3.9	7
289	Bulk Assembly of Corrugated 1D Metal Halides with Broadband Yellow Emission. <i>Advanced Optical Materials</i> , 2019 , 7, 1801474	8.1	44
288	Synthesis and Crystal Structure of the Layered Lanthanide Oxychlorides BaLnOCl. <i>Inorganic Chemistry</i> , 2018 , 57, 1727-1734	5.1	6
287	Uncovering the Origin of Divergence in the CsM(CrO) (M = La, Pr, Nd, Sm, Eu; Am) Family through Examination of the Chemical Bonding in a Molecular Cluster and by Band Structure Analysis. Journal of the American Chemical Society, 2018, 140, 1674-1685	16.4	13
286	Facile Preparation of Light Emitting Organic Metal Halide Crystals with Near-Unity Quantum Efficiency. <i>Chemistry of Materials</i> , 2018 , 30, 2374-2378	9.6	115
285	Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11961-11967	7.1	61
284	Effects of chemical disorder in the itinerant antiferromagnet Ti V Au. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 365602	1.8	
283	Low-Dimensional Organometal Halide Perovskites. ACS Energy Letters, 2018, 3, 54-62	20.1	365
282	Quantum criticality among entangled spin chains. <i>Nature Physics</i> , 2018 , 14, 273-276	16.2	17
281	Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. <i>Chemical Science</i> , 2018 , 9, 586-593	9.4	311
280	Weak ferromagnetism and glassy state in (BEDTITTF)2Hg(SCN)2Br. Physical Review B, 2018, 98,	3.3	6
279	Blue Emitting Single Crystalline Assembly of Metal Halide Clusters. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13181-13184	16.4	120
278	A One-Dimensional Organic Lead Chloride Hybrid with Excitation-Dependent Broadband Emissions. <i>ACS Energy Letters</i> , 2018 , 3, 1443-1449	20.1	92
277	Electrochemical Doping of Halide Perovskites with Ion Intercalation. ACS Nano, 2017, 11, 1073-1079	16.7	85
276	Growth of EuO single crystals at reduced temperatures. <i>Physical Review B</i> , 2017 , 95,	3.3	2
275	Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation. <i>Angewandte Chemie</i> , 2017 , 129, 9146-9150	3.6	36
274	Interacting nanoscale magnetic superatom cluster arrays in molybdenum oxide bronzes. <i>Nanoscale</i> , 2017 , 9, 7922-7929	7.7	4
273	Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9018-9022	16.4	170

272	One-dimensional organic lead halide perovskites with efficient bluish white-light emission. <i>Nature Communications</i> , 2017 , 8, 14051	17.4	464
271	Temperature-dependent elasticity of Pb[(Mg0.33Nb0.67)1\(\text{Tix}\) O3. <i>Physical Review B</i> , 2017 , 96,	3.3	2
270	Bulk assembly of organic metal halide nanotubes. <i>Chemical Science</i> , 2017 , 8, 8400-8404	9.4	51
269	Gel Growth of K2PbCu(NO2)6-Elpasolite Single Crystals. <i>Crystal Growth and Design</i> , 2017 , 17, 5170-517	73.5	2
268	Possible devil® staircase in the Kondo lattice CeSbSe. <i>Physical Review B</i> , 2017 , 96,	3.3	13
267	Quantum critical point in the Sc-doped itinerant antiferromagnet TiAu. <i>Physical Review B</i> , 2017 , 95,	3.3	5
266	Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite. <i>ACS Applied Materials & Discourse (Materials & Materials & Mate</i>	9.5	125
265	Correlated electron state in CeCu2Si2 controlled through Si to P substitution. <i>Physical Review Materials</i> , 2017 , 1,	3.2	2
264	Temperature-pressure phase diagram of cubic Laves phase Au2Pb. <i>Physical Review B</i> , 2016 , 93,	3.3	10
263	Coexistence of Weyl physics and planar defects in the semimetals TaP and TaAs. <i>Physical Review B</i> , 2016 , 93,	3.3	31
262	High Magnetic Field Annealing of Mn-Ga Intermetallic Alloys. MRS Advances, 2016, 1, 227-233	0.7	2
261	High hardness in the biocompatible intermetallic compound 町i3Au. <i>Science Advances</i> , 2016 , 2, e160031	1914.3	34
260	Competing covalent and ionic bonding in Ge-Sb-Te phase change materials. <i>Scientific Reports</i> , 2016 , 6, 25981	4.9	29
259	Two New Polymorphs of the Organic Semiconductor 9,10-Diphenylanthracene: Raman and X-ray Analysis. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 1831-1840	3.8	26
258	Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. <i>ACS Nano</i> , 2016 , 10, 1795-801	16.7	219
257	Single Crystal Growth of URu2Si2 by the Modified Bridgman Technique. <i>Crystals</i> , 2016 , 6, 128	2.3	3
256	A Solution-Processed Organometal Halide Perovskite Hole Transport Layer for Highly Efficient Organic Light-Emitting Diodes. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600165	6.4	22
255	Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment. <i>AIP Advances</i> , 2016 , 6, 056012	1.5	5

(2014-2016)

254	Uncovering the behavior of Hf2Te2P and the candidate Dirac metal Zr2Te2P. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 14LT01	1.8	7
253	Thermodynamic Measurement of Angular Anisotropy at the Hidden Order Transition of URu_{2}Si_{2}. <i>Physical Review Letters</i> , 2016 , 117, 157201	7.4	7
252	An itinerant antiferromagnetic metal without magnetic constituents. <i>Nature Communications</i> , 2015 , 6, 7701	17.4	24
251	A family of rare earth molybdenum bronzes: Oxides consisting of periodic arrays of interacting magnetic units. <i>Journal of Solid State Chemistry</i> , 2015 , 227, 178-185	3.3	2
250	Complex magnetism and strong electronic correlations in Ce2PdGe3. <i>Physical Review B</i> , 2015 , 91,	3.3	10
249	Ba2TeO as an optoelectronic material: First-principles study. <i>Journal of Applied Physics</i> , 2015 , 117, 1957	70 255	3
248	Ligand Control of Manganese Telluride Molecular Cluster Core Nuclearity. <i>Inorganic Chemistry</i> , 2015 , 54, 8348-55	5.1	24
247	Synthesis and characterization of the divalent samarium Zintl-phases SmMg2Bi2 and SmMg2Sb2. Journal of Solid State Chemistry, 2015 , 231, 217-222	3.3	15
246	Ba2TeO: A new layered oxytelluride. <i>Journal of Solid State Chemistry</i> , 2015 , 222, 60-65	3.3	4
245	Non-Fermi Liquid Behavior Close to a Quantum Critical Point in a Ferromagnetic State without Local Moments. <i>Physical Review X</i> , 2015 , 5,	9.1	7
244	Transport properties of cubic crystalline Ge2Sb2Te5: A potential low-temperature thermoelectric material. <i>Applied Physics Letters</i> , 2015 , 106, 123907	3.4	16
243	A facility for X-ray diffraction in magnetic fields up to 25 T and temperatures between 15 and 295 K. <i>Review of Scientific Instruments</i> , 2015 , 86, 123902	1.7	3
242	Electronic, transport, and optical properties of bulk and mono-layer PdSe2. <i>Applied Physics Letters</i> , 2015 , 107, 153902	3.4	124
241	Impact of vacancy ordering on thermal transport in crystalline phase-change materials. <i>Reports on Progress in Physics</i> , 2015 , 78, 013001	14.4	76
240	Texture in state-of-the-art Nb3Sn multifilamentary superconducting wires. <i>Superconductor Science and Technology</i> , 2014 , 27, 025013	3.1	11
239	Ferromagnetic ordering in superatomic solids. <i>Journal of the American Chemical Society</i> , 2014 , 136, 169	26634	47
238	Assembling hierarchical cluster solids with atomic precision. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15873-6	16.4	51
237	Single crystal synthesis and magnetism of the BaLn2O4 family (Ln lanthanide). <i>Progress in Solid State Chemistry</i> , 2014 , 42, 23-36	8	27

236	Hard magnetic properties observed in bulk Mn1⊠Gax. <i>Journal of Applied Physics</i> , 2014 , 115, 17A723	2.5	9
235	Spin ordering and dynamics in the frustrated antiferromagnet YBaCo4O7.1. <i>Physical Review B</i> , 2014 , 89,	3.3	1
234	Stress distribution and lattice distortions in Nb3Sn multifilament wires under uniaxial tensile loading at 4.2 K. <i>Superconductor Science and Technology</i> , 2014 , 27, 044021	3.1	14
233	A new oxytelluride: Perovskite and CsCl intergrowth in Ba3Yb2O5Te. <i>Journal of Solid State Chemistry</i> , 2013 , 203, 204-211	3.3	4
232	Small and nearly isotropic hole-like Fermi surfaces in LiFeAs detected through de Haas II an Alphen effect. <i>Physical Review B</i> , 2013 , 88,	3.3	11
231	Thermodynamic and transport properties of RSn2 (R=TbIIm, Lu, Y) single crystals. <i>Journal of Magnetism and Magnetic Materials</i> , 2013 , 341, 6-16	2.8	3
230	Supersized contorted aromatics. <i>Chemical Science</i> , 2013 , 4, 2018	9.4	122
229	Nanoscale atoms in solid-state chemistry. <i>Science</i> , 2013 , 341, 157-60	33.3	162
228	Anomalous metallic state and anisotropic multiband superconductivity in Nb3Pd0.7Se7. <i>Physical Review B</i> , 2013 , 88,	3.3	25
227	Evidence for an internal-field-induced spin-flop configuration in the extended kagome YBaCo4O7. <i>Physical Review B</i> , 2013 , 87,	3.3	9
226	Superconductivity with extremely large upper critical fields in Nb2Pd0.81S5. <i>Scientific Reports</i> , 2013 , 3, 1446	4.9	53
225	Phase Change Materials: Challenges on the Path to a Universal Storage Device. <i>Annual Review of Condensed Matter Physics</i> , 2012 , 3, 215-237	19.7	68
224	In situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching. <i>Carbon</i> , 2012 , 50, 3859-3867	10.4	49
223	Orbital, charge, and spin couplings in Ru25+O9 dimers of Ba3CoRu2O9. <i>Physical Review B</i> , 2012 , 85,	3.3	11
222	Co[V2]o4: a spinel approaching the itinerant electron limit. <i>Physical Review Letters</i> , 2011 , 106, 056602	7.4	54
221	Disorder-induced localization in crystalline phase-change materials. <i>Nature Materials</i> , 2011 , 10, 202-8	27	435
220	Synthesis, crystal structure, and magnetism of Fe1.00(2)Se1.00(3) single crystals. <i>Physical Review B</i> , 2011 , 83,	3.3	55
219	Synthesis of regioregular pentacene-containing conjugated polymers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 7078		18

(2007-2011)

218	Physical characterization of functionalized spider silk: electronic and sensing properties. <i>Science and Technology of Advanced Materials</i> , 2011 , 12, 055002	7.1	28	
217	Chemical pressure effects on structural, magnetic, and transport properties of Mn1\(\mathbb{\mathbb{N}}\)CoxV2O4. <i>Physical Review B</i> , 2011 , 84,	3.3	39	
216	Floating zone crystal growth and structural distortion of Pb2V3O9. <i>Journal of Crystal Growth</i> , 2011 , 321, 120-123	1.6	2	
215	Disorder-dependent superconducting phase diagram at high magnetic fields in Fe1+ySexTe1 $\mbox{\ensuremath{\mathbb{N}}}$ (x~0.4). <i>Physical Review B</i> , 2011 , 84,	3.3	13	
214	Metamagnetic transition in single-crystal Bi4Cu3V2O14. <i>Physical Review B</i> , 2010 , 82,	3.3	4	
213	Resonating valence bond and sigma-charge density wave phases in a benzannulated phenalenyl radical. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2684-94	16.4	30	
212	Tin telluride: A weakly co-elastic metal. <i>Physical Review B</i> , 2010 , 82,	3.3	31	
211	Growth of Single-Crystal Organic Semiconductors 2010 , 845-867		6	
210	Structural anisotropy in a-MgxZn1🛭O (0🖾0.33) films on r-sapphire. <i>Journal of Vacuum Science</i> & <i>Technology B</i> , 2009 , 27, 1620		7	
209	Possible Verwey-Type Transition in Pb3Rh7O15. <i>Chemistry of Materials</i> , 2009 , 21, 2300-2305	9.6	7	
208	Cupric oxide as an induced-multiferroic with high-TC. <i>Nature Materials</i> , 2008 , 7, 291-4	27	396	
207	Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6955-63	16.4	420	
206	Reactions of strained hydrocarbons with alkene and alkyne metathesis catalysts. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14078-9	16.4	28	
205	Trialkylsilylethynyl-Functionalized Tetraceno[2,3-b]thiophene and Anthra[2,3-b]thiophene Organic Transistors. <i>Chemistry of Materials</i> , 2008 , 20, 4669-4676	9.6	60	
204	In-plane anisotropic strain in a-ZnO films grown on r-sapphire substrates. <i>Applied Physics Letters</i> , 2008 , 93, 041903	3.4	41	
203	Mg composition dependent strain analysis in nonpolar a-plane MgxZn1⊠O films. <i>Applied Physics Letters</i> , 2008 , 93, 151907	3.4	8	
202	5,6,11,12-Tetrachlorotetracene, a tetracene derivative with Estacking structure: The synthesis, crystal structure and transistor properties. <i>Organic Electronics</i> , 2008 , 9, 234-240	3.5	62	
201	Molecular ordering in bis(phenylenyl)bithiophenes. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3427		11	

200	Enantiotropic Polymorphism in Di-indenoperylene. Journal of Physical Chemistry C, 2007, 111, 18878-1	88 <u>8</u> 8	64
199	Sharp switching of the magnetization in Fe1日TaS2. <i>Physical Review B</i> , 2007 , 75,	3.3	67
198	A Polymorph Lost and Found: The High-Temperature Crystal Structure of Pentacene. <i>Advanced Materials</i> , 2007 , 19, 2079-2082	24	110
197	Growth and Electronic Transport in 9,10-Diphenylanthracene Single Crystals An Organic Semiconductor of High Electron and Hole Mobility. <i>Advanced Materials</i> , 2007 , 19, 2097-2101	24	64
196	Mobility-independent doping in crystalline rubrene field-effect transistors. <i>Solid State Communications</i> , 2007 , 142, 483-486	1.6	17
195	Surface and Interface Properties of Metal-Organic Chemical Vapor Deposition Grown a-Plane Mg x Zn1☑ O (0 ☎ ☎ .3) Films. <i>Journal of Electronic Materials</i> , 2007 , 36, 446-451	1.9	9
194	Structural and Optical Properties of ZnO Nanotips Grown on GaN Using Metalorganic Chemical Vapor Deposition. <i>Journal of Electronic Materials</i> , 2007 , 36, 654-658	1.9	7
193	Pentacene-based thin film transistors with titanium oxide-polystyrene/polystyrene insulator blends: High mobility on high K dielectric films. <i>Applied Physics Letters</i> , 2007 , 90, 062111	3.4	41
192	a-plane MgxZn1NO films deposited on r-sapphire and its surface acoustic wave characteristics. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2007 , 25, 857-861	2.9	9
191	Optimized growth of lattice-matched InxAl1NCaN heterostructures by molecular beam epitaxy. <i>Applied Physics Letters</i> , 2007 , 90, 021922	3.4	36
190	Large uniaxial negative thermal expansion in pentacene due to steric hindrance. <i>Physical Review B</i> , 2007 , 76,	3.3	57
189	Role of synthesis for oxygen defect incorporation in crystalline rubrene. <i>Applied Physics Letters</i> , 2007 , 91, 212106	3.4	41
188	Synthesis and characterization of the pseudo-hexagonal hollandites ALi2Ru6O12 (A=Na, K). <i>Journal of Solid State Chemistry</i> , 2006 , 179, 941-948	3.3	5
187	Hybrid deposition of piezoelectric ((11bar 20)) MgxZn1⊠O (0⊠0.3) on ((01bar 12)) R-sapphire substrates using RF sputtering and MOCVD. <i>Journal of Electronic Materials</i> , 2006 , 35, 1306-1310	1.9	7
186	Phase Formation and Properties in the System Bi2O3:2CoO1+x:Nb2O5. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 4908-4914	2.3	48
185	Exciton and Defect Photoluminescence Signatures in Single Crystal Rubrene. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 965, 1		
184	Ferroelectricity in the cycloidal spiral magnetic phase of MnWO4. Physical Review B, 2006, 74,	3.3	186
183	Ferromagnetism in Fe-implanted a-plane ZnO films. <i>Applied Physics Letters</i> , 2006 , 89, 012508	3.4	46

(2004-2006)

182	High-reflectivity ultraviolet AlGaNAlGaN distributed Bragg reflectors. <i>Applied Physics Letters</i> , 2006 , 88, 171101	3.4	32
181	Organization of acenes with a cruciform assembly motif. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1340-5	16.4	205
180	Oxygen-related band gap state in single crystal rubrene. <i>Physical Review Letters</i> , 2006 , 97, 166601	7.4	103
179	Field Effect Studies on Rubrene and Impurities of Rubrene. <i>Chemistry of Materials</i> , 2006 , 18, 244-248	9.6	168
178	Diquino[3,4-b;4?,3?-e][1,4]dithiine. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2006 , 62, o1333-o1335		
177	Diquino[4,3-b;3?,4?-e][1,4]thiaselenine. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2006 , 62, o3203-o3205		
176	Dislocations and grain boundaries in semiconducting rubrene single-crystals. <i>Journal of Crystal Growth</i> , 2006 , 290, 479-484	1.6	59
175	Transferring self-assembled, nanoscale cables into electrical devices. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10700-1	16.4	198
174	Organic Semiconductor Designed for Lamination Transfer between Polymer Films. <i>Chemistry of Materials</i> , 2005 , 17, 5748-5753	9.6	24
173	Single-crystal field-effect transistors based on copper phthalocyanine. <i>Applied Physics Letters</i> , 2005 , 86, 022103	3.4	196
172	An organometallic synthesis of TiO2 nanoparticles. <i>Nano Letters</i> , 2005 , 5, 543-8	11.5	130
171	Template-dependent morphogenesis of oriented calcite crystals in the presence of magnesium ions. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2386-90	16.4	51
170	Self-Assembly and Electronics of Dipolar Linear Acenes. <i>Advanced Materials</i> , 2005 , 17, 407-412	24	108
169	X-ray structure of 14-phenyldiquino[3,4 b;4?,3?-e][1,4]thiazine(1). <i>Journal of Chemical Crystallography</i> , 2005 , 35, 731-736	0.5	7
168	Azinyl sulfides. LXXXI.(1)14-Phenyl-7-thiapyrano[2,3-c;6,5-cfdiquinoline-14-carbonitrile. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 2005 , 61, o377-9		
167	Synthesis and Structure of Dipyrido-1,4-dithiins. <i>Heterocycles</i> , 2005 , 65, 2619	0.8	5
166	Bias-dependent generation and quenching of defects in pentacene. <i>Physical Review Letters</i> , 2004 , 93, 076601	7.4	118
165	Amorphouslike density of gap states in single-crystal pentacene. <i>Physical Review Letters</i> , 2004 , 93, 086	80 ⁹ 24	186

164	Crystallization of charge holes in the spin ladder of Sr14Cu24O41. <i>Nature</i> , 2004 , 431, 1078-81	50.4	147
163	Electronic characterization of alkali ruthenium hollandites: KRu4O8, RbRu4O8 and Cs0.8Li0.2Ru4O8. <i>Materials Research Bulletin</i> , 2004 , 39, 1663-1670	5.1	17
162	Synthesis, crystal structure, and transistor performance of tetracene derivatives. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15322-3	16.4	335
161	Crystal Structure and Properties of Ba11FeTi27O66.5. European Journal of Inorganic Chemistry, 2004, 2434-2441	2.3	4
160	Metalorganic chemical vapor deposition and characterizations of epitaxial MgxZn1⊠O (0?x?0.33) films on r-sapphire substrates. <i>Journal of Crystal Growth</i> , 2004 , 261, 316-323	1.6	18
159	Structure of ten-layer orthorhombic Ba5Fe5O14 (BaFeO2.8) determined from single crystal X-ray diffraction. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 928-935	3.3	29
158	Photochemical Stability of Pentacene and a Substituted Pentacene in Solution and in Thin Films. <i>Chemistry of Materials</i> , 2004 , 16, 4980-4986	9.6	352
157	Structure and Transport Properties of the Charge-Transfer Salt Coronene II CNQ. <i>Chemistry of Materials</i> , 2004 , 16, 5751-5755	9.6	65
156	Mesophase Transitions, Surface Functionalization, and Growth Mechanism of Semiconducting 6PTTP6 Films from Solution <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8567-8571	3.4	27
155	Synthesis, structure and physical properties of the first one-dimensional phenalenyl-based neutral radical molecular conductor. <i>Journal of the American Chemical Society</i> , 2004 , 126, 1478-84	16.4	71
154	Subsolidus phase equilibria and crystal chemistry in the system BaOIIiO2IIa2O5. <i>Solid State Sciences</i> , 2003 , 5, 149-164	3.4	24
153	Combining Magnets and Dielectrics: Crystal Chemistry in the BaOHe2O3IIiO2 System. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 1483-1501	2.3	31
152	Tetramethylpentacene: Remarkable Absence of Steric Effect on Field Effect Mobility. <i>Advanced Materials</i> , 2003 , 15, 1090-1093	24	201
151	Re4As6S3, a thio-spinel-related cluster system. <i>Journal of Solid State Chemistry</i> , 2003 , 172, 446-450	3.3	7
150	Composition-dependent crystallization of alternative gate dielectrics. <i>Applied Physics Letters</i> , 2003 , 83, 1459-1461	3.4	20
149	Inhomogeneous CuO6 tilt distribution and charge-spin correlations in La2NJNdySrxCuO4 around the commensurate hole concentration. <i>Physical Review B</i> , 2003 , 68,	3.3	6
148	Growth and structural analysis of metalorganic chemical vapor deposited (112 0) MgxZn1⊠O (0. <i>Applied Physics Letters</i> , 2003 , 82, 742-744	3.4	64
147	Synthesis and X-Ray Analysis of Isomeric Diazadithiapentacenes. <i>Heterocycles</i> , 2003 , 60, 2045	0.8	9

New barium manganese titanates prepared under reducing conditions. Solid State Sciences, 2002, 4, 323-327 5 146 Crystal structure of Ba27Fe16Ti33O117. Solid State Sciences, 2002, 4, 911-916 145 3.4 A 2:1 cocrystal of 6,13-dihydropentacene and pentacene. Acta Crystallographica Section E: Structure 144 23 Reports Online, 2002, 58, o1229-o1231 Band Electronic Structure of One- and Two-Dimensional Pentacene Molecular Crystals Journal of 118 143 3.4 Physical Chemistry B, 2002, 106, 8288-8292 Two-dimensional band-like charge transport in Exithiophene. Organic Electronics, 2001, 2, 135-142 142 3.5 5 Charge transport in anthradithiophene single crystals. Organic Electronics, 2001, 2, 165-169 141 3.5 Synthesis, Crystal Structure, and Magnetic and Electric Properties of the Cross-Linked Chain Cobalt 140 19 3.3 Oxychloride Ba5Co5ClO13. Journal of Solid State Chemistry, 2001, 158, 175-179 Synthesis and Structure of a New Germanate Fluoride: NaCa2GeO4F. Journal of Solid State 139 3.3 13 Chemistry, 2001, 160, 33-38 Solid-state structural and electrical characterization of N-benzyl and N-alkyl naphthalene 138 3.2 43 1,4,5,8-tetracarboxylic diimides. ChemPhysChem, 2001, 2, 167-72 Enhanced Physical Properties in a Pentacene Polymorph. Angewandte Chemie, 2001, 113, 1782-1786 3.6 10 137 Enhanced Physical Properties in a Pentacene Polymorph. Angewandte Chemie - International Edition 136 16.4 171 , **2001**, 40, 1732-1736 Growth and Characterization of GaN/AlGaN Superlattices for Near-Infrared Intersubband 135 13 Transitions. Physica Status Solidi A, 2001, 188, 825-831 Superconductivity in single crystals of the fullerene C70. Nature, 2001, 413, 831-3 134 50.4 30 Standard Reference Material (SRM 1990) For Single Crystal Diffractometer Alignment. Journal of 133 1.3 11 Research of the National Institute of Standards and Technology, 2001, 106, 1071-94 Solid-State Structural and Electrical Characterization of N-Benzyl and N-Alkyl Naphthalene 132 1 1,4,5,8-Tetracarboxylic Diimides **2001**, 2, 167 A soluble and air-stable organic semiconductor with high electron mobility. Nature, 2000, 404, 478-81 131 50.4 939 Structural study of Ba11Fe8Ti9O41 by X-ray diffraction. Solid State Sciences, 2000, 2, 539-544 130 3.4 5 Crystal structure of CsLnFe(CN)6[3H2O (Ln=Ce, Pr, Nd), CsCeFe(CN)6[4H2O, and 6 129 3.4 TlTmRu(CN)6BH2O. Solid State Sciences, **2000**, 2, 607-614

128	Multiwavelength DFB laser array with integrated spot size converters. <i>IEEE Journal of Quantum Electronics</i> , 2000 , 36, 641-648	2	9
127	The Structure and Conductivity of K8Nd3Si12O32(OH): A Layered Silicate with Paths for Possible Fast-Ion Condution. <i>Journal of Solid State Chemistry</i> , 1999 , 148, 406-418	3.3	8
126	Simulation and characterization of the selective area growth process. <i>Applied Physics Letters</i> , 1999 , 74, 2617-2619	3.4	42
125	Physical vapor growth of organic semiconductors. <i>Journal of Crystal Growth</i> , 1998 , 187, 449-454	1.6	565
124	A New Synthetic Route to Pseudo-Brookite-Type CaTi2O4. <i>Journal of Solid State Chemistry</i> , 1998 , 141, 338-342	3.3	30
123	Crystal Growth, Structure, and Electronic Band Structure of E4T Polymorphs. <i>Advanced Materials</i> , 1998 , 10, 379-382	24	245
122	Crystal structure and properties of Ba5Fe4Ti10O31. Journal of Alloys and Compounds, 1998, 274, 169-1	78 _{.7}	8
121	Magnetic anisotropy of doped manganite thin films and crystals. <i>Journal of Applied Physics</i> , 1998 , 83, 7064-7066	2.5	97
12 0	Microstructure and Texture of Electroplated Copper in Damascene Structures. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 514, 293		18
119	Single crystal growth of cuprates from hydroxide fluxes. <i>Journal of Materials Research</i> , 1997 , 12, 1210-	12:13	7
118	REDUCED ALKALINE EARTH TANTALATES. Materials Research Bulletin, 1997, 32, 881-887	5.1	22
117	Crystallographica- a software toolkit for crystallography. <i>Journal of Applied Crystallography</i> , 1997 , 30, 418-419	3.8	20
116	Ln3Cu4P4O2: A New Lanthanide Transition Metal Pnictide Oxide Structure Type. <i>Journal of Solid State Chemistry</i> , 1997 , 129, 250-256	3.3	26
115	Physical vapor growth of centimeter-sized crystals of Ehexathiophene. <i>Journal of Crystal Growth</i> , 1997 , 182, 416-427	1.6	311
114	Multiple-layer blank structure for phase-shifting mask fabrication. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1996 , 14, 63		11
113	ScAlMgO4: an Oxide Substrate for GaN Epitaxy. <i>MRS Internet Journal of Nitride Semiconductor Research</i> , 1996 , 1, 1		32
112	Ln3Cu4P4O2: a New Lanthanide Transition Metal Pnictide Oxide Structure Type. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 453, 305		1
111	Crystal Structure and Elementary Physical Properties of La5Cu19P12and Ce5Cu19P12. <i>Journal of Solid State Chemistry</i> , 1996 , 121, 51-55	3.3	15

110	NaH[Cu2(O2C2H3)6]: A New Compound Containing Copper-to-Copper Bonding. <i>Journal of Solid State Chemistry</i> , 1996 , 121, 61-65	3.3	7
109	Epitaxial growth and magnetic behavior of NiFe2O4 thin films. <i>Journal of Materials Research</i> , 1996 , 11, 1187-1198	2.5	101
108	Superconductivity and cation-vacancy ordering in the rare-earth fulleride Yb2.75C60. <i>Nature</i> , 1995 , 375, 126-129	50.4	97
107	Purification and single crystal growth of niobium by combined zone refining and electrotransport. <i>Physica B: Condensed Matter</i> , 1995 , 204, 363-366	2.8	4
106	Growth of Hexathienyl by a micro melt technique. <i>Journal of Crystal Growth</i> , 1995 , 152, 241-244	1.6	21
105	Epitaxy of ultrathin films of YBa2Cu3O7Ibn SrTiO3(001) investigated with X-ray standing waves. <i>Solid State Communications</i> , 1995 , 93, 763-767	1.6	38
104	Zinc-indium-oxide: A high conductivity transparent conducting oxide. <i>Applied Physics Letters</i> , 1995 , 67, 2246-2248	3.4	188
103	The crystal structure of the high-temperature polymorph of Bexathienyl (BT/HT). <i>Journal of Materials Research</i> , 1995 , 10, 2170-2173	2.5	166
102	Band structures of organic thin-film transistor materials. <i>Journal of Materials Chemistry</i> , 1995 , 5, 1719		94
101	ScAlMgO4: An Oxide Substrate for GaN Epitaxy. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 395, 51		19
100	Anisotropy in diamond etching with molten cerium. <i>Applied Physics Letters</i> , 1994 , 65, 2675-2677	3.4	8
99	Elementary physical properties and crystal structures of LaRh2B2C and LaIr2B2C. <i>Physical Review B</i> , 1994 , 50, 12966-12968	3.3	20
98	Superconductivity in RPt2B2C. Physical Review B, 1994, 49, 12384-12387	3.3	77
97	La6BaYCu8O20: A New Oxygen Deficient Perovskite. <i>Journal of Solid State Chemistry</i> , 1994 , 109, 345-35	53.3	4
96	A New Barium Scandium Silicate: Ba9Sc2(SiO4)6. Journal of Solid State Chemistry, 1994, 113, 211-214	3.3	31
95	Stabilization of superconducting LnPt2B2C by partial substitution of gold for platinum. <i>Physica C:</i> Superconductivity and Its Applications, 1994 , 226, 170-174	1.3	28
94	Good news from an abandoned gold mine: A new family of quaternary intermetallic superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 154-157	1.3	17
93	Superconductivity in the LnNi2B2C intermetallics via boron A1g phonons. <i>Solid State Communications</i> , 1994 , 91, 587-590	1.6	146

92	Superconductivity at 23 K in yttrium palladium boride carbide. <i>Nature</i> , 1994 , 367, 146-148	50.4	542
91	Superconductivity in the quaternary intermetallic compounds LnNi2B2C. <i>Nature</i> , 1994 , 367, 252-253	50.4	820
90	The crystal structure of superconducting LuNi2B2C and the related phase LuNiBC. <i>Nature</i> , 1994 , 367, 254-256	50.4	530
89	Crystal chemistry of the series LnT2B2C (Ln ? rare earth, T ? transition element). <i>Journal of Alloys and Compounds</i> , 1994 , 216, 135-139	5.7	114
88	New phases of c60 synthesized at high pressure. <i>Science</i> , 1994 , 264, 1570-2	33.3	604
87	Structural studies of high-pressure Ba?Rh?O phases. <i>Journal of Alloys and Compounds</i> , 1994 , 210, 13-17	5.7	12
86	effect of Diverse Ligands on the Course of a Molecules-to-Solids Process and Properties of Its Intermediates. <i>Inorganic Chemistry</i> , 1994 , 33, 3389-3395	5.1	38
85	SYNTHESIS AND CHARACTERIZATION OF ALKALI METAL FULLERIDES: AxC60 1993 , 151-162		1
84	Hexakis(triethylphosphine)octatelluridohexachromium and a molecule-based synthesis of chromium telluride, Cr3Te4. <i>Inorganic Chemistry</i> , 1993 , 32, 5165-5169	5.1	54
83	Some Uses of Crystallographic Databases and Bibliographies. <i>MRS Bulletin</i> , 1993 , 18, 38-39	3.2	2
82	Cs8.5W15O48 and CSW2O6: Members of a New Homologous Series of Cesium Tungsten Oxides. Journal of Solid State Chemistry, 1993 , 103, 359-365	3.3	25
81	A Reduced Neodymium Titanate with a New Intergrowth Structure Type. <i>Journal of Solid State Chemistry</i> , 1993 , 105, 107-111	3.3	4
80	Hydrothermal synthesis of new alkali silicates I. Potassium neodymium phases. <i>Journal of Crystal Growth</i> , 1993 , 131, 352-372	1.6	16
79	Growth of YBa2Cu3O7IIn pure ozone irradiated with ultraviolet light. <i>Applied Physics Letters</i> , 1992 , 60, 2489-2490	3.4	18
78	Radiative Properties of Y-Ba-Cu-0 Films With Variable Oxygen Content. <i>Journal of Heat Transfer</i> , 1992 , 114, 958-964	1.8	11
77	Nickel-selenium-triethylphosphine (Ni23Se12(PEt3)13), an intramolecular intergrowth of nickel selenide (NiSe) and nickel. <i>Journal of the American Chemical Society</i> , 1992 , 114, 10334-10338	16.4	36
76	Molecular precursor chemistry for titanium nitride: synthesis and structure of [Ti(NMe2)(N3)(.muNMe2)]3(.mu.3-N3)(.mu.3-NH). <i>Inorganic Chemistry</i> , 1992 , 31, 4898-4899	5.1	18
75	Iron telluride (Et3P)4Fe4Te4: an intermediate between molecular reagents and solid state products. <i>Journal of the American Chemical Society</i> , 1992 , 114, 3155-3156	16.4	28

(1991-1992)

74	Conductivity and crystallography of new alkali rare-earth silicates synthesized as possible fast-ion conductors. <i>Solid State Ionics</i> , 1992 , 53-56, 1292-1301	3.3	18
73	Synthesis and characterization of alkali metal fullerides: AxC60. <i>Journal of Physics and Chemistry of Solids</i> , 1992 , 53, 1321-1332	3.9	249
72	New Layered Iron-Lanthanum-Oxide-Sulfide and -Selenide Phases: Fe2La2O3E2(E = S,Se). <i>Angewandte Chemie International Edition in English</i> , 1992 , 31, 1645-1647		84
71	A new type of homologous series in the La-Cu-O system. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 177, 115-121	1.3	31
70	YBa2Cu3O7 on SiTiO3 (100) and Si(111) investigated with X-ray standing waves. <i>Physica C:</i> Superconductivity and Its Applications, 1991 , 185-189, 2077-2078	1.3	3
69	Superconductivity in multiple phase Sr2Ln1\(\mathbb{L}\)CaxGaCu2O7 and characterization of La2\(\mathbb{L}\)SrxCaCu2O6+\(\mathbb{I}\)Physica C: Superconductivity and Its Applications, 1991 , 185-189, 180-183	1.3	30
68	Crystal growth, structure, and magnetic properties of H0.23Li1.68Mo1.05O3. <i>Journal of Solid State Chemistry</i> , 1991 , 91, 126-130	3.3	1
67	New reduced ternary titanates from borate fluxes. <i>Journal of Solid State Chemistry</i> , 1991 , 94, 306-312	3.3	13
66	A new homologous series of lanthanum copper oxides. <i>Journal of Solid State Chemistry</i> , 1991 , 94, 170-1	18 4 .3	43
65	Crystallization of reduced strontium and barium niobate perovskites from borate fluxes. <i>Materials Research Bulletin</i> , 1991 , 26, 85-90	5.1	57
64	Preparation and structure of the alkali-metal fulleride A4C60. <i>Nature</i> , 1991 , 352, 701-703	50.4	294
63	The crystal structure of Ba (Bi0.977K0.023)O3 by single-crystal X-ray diffraction. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 181, 325-330	1.3	2
62	Magnetothermal behavior of the two-dimensional triangular-lattice compounds RCuO2. <i>Physical Review B</i> , 1991 , 43, 10461-10465	3.3	14
61	Pseudotenfold symmetry in pentane-solvated C60 and C70. <i>Physical Review B</i> , 1991 , 44, 888-891	3.3	126
60	(Ba,K)3Bi2O7: A layered bismuth oxide. <i>Physical Review B</i> , 1991 , 44, 9746-9748	3.3	29
59	Superconducting phases of URu2Si2. <i>Physical Review B</i> , 1991 , 44, 5392-5395	3.3	46
58	Structure and properties of reduced barium niobium oxide single crystals obtained from borate fluxes. <i>Chemistry of Materials</i> , 1991 , 3, 528-534	9.6	38
57	Field dependence of critical currents in polycrystalline Bi-Pb-Sr-Ca-Cu-O superconductors. <i>Applied Physics Letters</i> , 1991 , 59, 366-368	3.4	4

56	A versatile low-pressure ozone source. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1991 , 9, 2408-2409	2.9	20
55	Initial stages in the molecule-based growth of the solid-state compound cobalt telluride (CoTe). <i>Inorganic Chemistry</i> , 1991 , 30, 4940-4945	5.1	57
54	Octatelluridohexakis(triethylphosphine)hexacobalt and a connection between Chevrel clusters and the NiAs structure. <i>Inorganic Chemistry</i> , 1991 , 30, 2256-2257	5.1	42
53	The crystal structure of BairO3. <i>Journal of the Less Common Metals</i> , 1991 , 170, 93-99		46
52	Crystal structure and superconductivity in Re2Si. Journal of the Less Common Metals, 1991, 171, 171-17	7	5
51	Diffraction Symmetry in Crystalline, Close-Packed C60. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 206, 691		122
50	Synthe0sis, Structure, and Ionic Conductivity of K3NdSi6O15. <i>Materials Research Society Symposia Proceedings</i> , 1990 , 210, 645		3
49	Preparation of high Tc (Yb, Y)Ba2Cu3O7-thin films by co-evaporation from effusion cells. <i>Journal of Electronic Materials</i> , 1990 , 19, 235-239	1.9	4
48	Cluster intermediates in an organometallic synthesis of palladium telluride PdTe. <i>Journal of the American Chemical Society</i> , 1990 , 112, 9233-9236	16.4	61
47	Ca1-xCuO2, a NaCuO2-type related structure. <i>Chemistry of Materials</i> , 1990 , 2, 192-194	9.6	68
46	Bulk and nanostructure Group II-VI compounds from molecular organometallic precursors. <i>Chemistry of Materials</i> , 1990 , 2, 403-409	9.6	155
45	Shock wave induced changes in superconductivity in YBa2Cu3O7[[Applied Physics Letters, 1989, 55, 1575-1577	3.4	24
44	Rapidly quenched Bi-containing high Tc superconducting oxide compositions. <i>Journal of Materials Research</i> , 1989 , 4, 1330-1338	2.5	37
43	Magnetic and electrical properties of UCu2Ge2. Solid State Communications, 1989, 69, 113-116	1.6	32
42	Stabilization of strontium analogs of barium yttrium cuprate perovskites via chemical substitution. <i>Chemistry of Materials</i> , 1989 , 1, 331-335	9.6	115
41	The preparation of large semiconductor clusters via the pyrolysis of a molecular precursor. <i>Journal of the American Chemical Society</i> , 1989 , 111, 4141-4143	16.4	158
40	The transition from molecules to solids: molecular syntheses of Ni9Te6(PEt3)8, Ni20Te18(PEt3)12 and NiTe. <i>Journal of the American Chemical Society</i> , 1989 , 111, 9240-9241	16.4	96
39	Synthesis and Structure of Novel Cuprates in the Ba-Y/Ca-Cu-O Systems. <i>Materials Research Society Symposia Proceedings</i> , 1989 , 156, 113		

38	Applications of the Crystallographic Search and Analysis System CRYSTDAT in Materials Science. Journal of Research of the National Bureau of Standards (United States), 1989, 94, 49-58		3
37	Growth of superconducting single crystals in the BiBrtatut system from alkali chloride fluxes. <i>Nature</i> , 1988 , 332, 422-424	50.4	132
36	The parent structure of the layered high-temperature superconductors. <i>Nature</i> , 1988 , 334, 231-232	50.4	555
35	Growth and structural characterization of superconducting Ba1⊠KxBiO3 single crystals. <i>Nature</i> , 1988 , 335, 421-423	50.4	114
34	Superconductivity near 70 K in a new family of layered copper oxides. <i>Nature</i> , 1988 , 336, 211-214	50.4	471
33	Studies of oxygen-deficient Ba2YCu3O7Iand superconductivity Bi(Pb)SrCaCuO. <i>Physica C:</i> Superconductivity and Its Applications, 1988 , 153-155, 560-565	1.3	247
32	A new layered cuprate structure-type, (A1NA?x)14Cu24O41. <i>Materials Research Bulletin</i> , 1988 , 23, 1429-	-15438	241
31	Structure and physical properties of single crystals of the 84-K superconductor Bi2.2Sr2Ca0.8Cu2O8+ delta. <i>Physical Review B</i> , 1988 , 38, 893-896	3.3	626
30	X-ray and electron powder diffraction data for Y2BaCuO5. <i>Materials Letters</i> , 1988 , 6, 101-104	3.3	6
29	Anharmonic thermal motion in the 93-K superconductor Ba2YCu. <i>Physical Review B</i> , 1988 , 38, 874-877	3.3	24
28	Magnetism and electronic transport in the concentrated Kondo system (UxLa1-x)2Zn17. <i>Physical Review B</i> , 1987 , 35, 5025-5029	3.3	9
27	Aluminum substitution in Ba2YCu3O7. <i>Physical Review B</i> , 1987 , 36, 8365-8368	3.3	220
26	Structural properties of Ba2RCu. <i>Physical Review B</i> , 1987 , 36, 3617-3621	3.3	113
25	Crystal structure of the high-Tc superconductor Ba2YCu3O9- delta. <i>Physical Review B</i> , 1987 , 35, 7137-7	139;	414
24	Aluminum Incorporation in Cuprate Perovskites. <i>Materials Research Society Symposia Proceedings</i> , 1987 , 99, 973		0
23	Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu. <i>Physical Review Letters</i> , 1987 , 58, 1676-1679	7·4	1501
22	Crystal chemistry of some Th2Zn17-type rare-earth-zinc phases. <i>Journal of the Less Common Metals</i> , 1987 , 127, 189-197		25
21	The crystal structure of Tm0.76Se (blue phase). <i>Journal of the Less Common Metals</i> , 1987 , 132, 243-249		11

20	Magnetotransport in (UxCe1☑)2Zn17 alloys. <i>Journal of Applied Physics</i> , 1987 , 61, 4370-4372	2.5	
19	Vacancy ordering in Gd1⊠Se. <i>Journal of Solid State Chemistry</i> , 1987 , 68, 185-187	3.3	1
18	Superconductivity in YBa2Cu3O7 single crystals. <i>Nature</i> , 1987 , 328, 601-603	50.4	320
17	The Magnetic structure of UIr. <i>Journal of Magnetism and Magnetic Materials</i> , 1987 , 67, 323-330	2.8	36
16	Magnetic susceptibility and electrical resistivity of some Th2Zn17-type rare-earth zinc phases. Journal of Magnetism and Magnetic Materials, 1987 , 66, 281-290	2.8	14
15	Superconductivity in rare earth cuprate perovskites. <i>Materials Research Bulletin</i> , 1987 , 22, 1467-1473	5.1	80
14	High-temperature behavior of CoAs2 and CoSb2. Journal of Solid State Chemistry, 1986, 63, 23-30	3.3	35
13	Growth of epitaxial films of CdTe and (Cd,Mn)Te on GaAs substrates. <i>Applied Physics Letters</i> , 1986 , 48, 1395-1397	3.4	20
12	Magnetotransport in the heavy-fermion compound U2Zn17. <i>Physical Review B</i> , 1986 , 33, 4370-4372	3.3	28
11	UIr, a PdBi-like distorted CrB-type structure. <i>Journal of the Less Common Metals</i> , 1986 , 125, 167-174		8
10	Dynamic spin organization in dilute magnetic systems. <i>Physical Review Letters</i> , 1985 , 55, 1128-1131	7.4	93
9	Magnetic field dependence of FowlerNordheim tunneling in Cd1NMnxTe. <i>Applied Physics Letters</i> , 1985 , 47, 1087-1089	3.4	4
8	The crystal structure of Re3Ge7. Journal of the Less Common Metals, 1983, 90, 143-151		7
7	The crystal structure and some properties of ReSi2. <i>Journal of the Less Common Metals</i> , 1983 , 92, 119-1	29	73
6	High resolution electron microscopy study of GeAsSe. <i>Materials Research Bulletin</i> , 1982 , 17, 351-354	5.1	1
5	Samarium pyrosilicate sulfide, Sm4S3Si2O7. <i>Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry</i> , 1982 , 38, 2872-2874		12
4	Hydrogen absorption by Th7Fe3 and the related magnetic, structural and surface properties. <i>Solid State Communications</i> , 1982 , 41, 135-138	1.6	20
3	The crystal structure of GeAsSe. <i>Materials Research Bulletin</i> , 1981 , 16, 1245-1251	5.1	7

Low-temperature phase transitions in GdS, GdSe and GdTe. Zeitschrift F\(\textit{D}\) Physik B Condensed Matter and Quanta, **1979**, 35, 81-90

21

Disorder Induced Metal-Insulator Transition in Phase Change Materials47-47