
Carlos Matute

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1759770/publications.pdf Version: 2024-02-01

CADLOS ΜΑΤΙΙΤΕ

#	Article	IF	CITATIONS
1	Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia, 2023, 71, 103-126.	2.5	15
2	Clemastine Induces an Impairment in Developmental Myelination. Frontiers in Cell and Developmental Biology, 2022, 10, 841548.	1.8	10
3	Amyloid β / PKC-dependent alterations in NMDA receptor composition are detected in early stages of Alzheimer´s disease. Cell Death and Disease, 2022, 13, 253.	2.7	16
4	A Neuron, Microglia, and Astrocyte Triple Co-culture Model to Study Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 844534.	1.7	18
5	Recombinant Integrin β1 Signal Peptide Blocks Gliosis Induced by Aβ Oligomers. International Journal of Molecular Sciences, 2022, 23, 5747.	1.8	1
6	Genetically modified macrophages accelerate myelin repair. EMBO Molecular Medicine, 2022, 14, .	3.3	9
7	Cannabinoid CB1 receptor gene inactivation in oligodendrocyte precursors disrupts oligodendrogenesis and myelination in mice. Cell Death and Disease, 2022, 13, .	2.7	6
8	<i>In vivo</i> multimodal imaging of adenosine A ₁ receptors in neuroinflammation after experimental stroke. Theranostics, 2021, 11, 410-425.	4.6	13
9	GABA _A Receptors Expressed in Oligodendrocytes Cultured from the Neonatal Rat Contain <i>α</i> 3 and <i>γ</i> 1 Subunits and Present Differential Functional and Pharmacological Properties. Molecular Pharmacology, 2021, 99, 133-146.	1.0	6
10	Δ ⁹ â€Tetrahydrocannabinol promotes oligodendrocyte development and CNS myelination in vivo. Glia, 2021, 69, 532-545.	2.5	21
11	Effects of Platelet-Rich Plasma on Cellular Populations of the Central Nervous System: The Influence of Donor Age. International Journal of Molecular Sciences, 2021, 22, 1725.	1.8	12
12	Astrocytic atrophy as a pathological feature of Parkinson's disease with LRRK2 mutation. Npj Parkinson's Disease, 2021, 7, 31.	2.5	30
13	A Multicentre, Randomised, Controlled Trial of a Combined Clinical Treatment for First-Episode Psychosis. International Journal of Environmental Research and Public Health, 2021, 18, 7239.	1.2	7
14	Maria Teresa Miras Portugal (1948–2021): in memoriam. Purinergic Signalling, 2021, 17, 515-517.	1.1	1
15	Fit-for-purpose based testing and validation of antibodies to amino- and carboxy-terminal domains of cannabinoid receptor 1. Histochemistry and Cell Biology, 2021, 156, 479-502.	0.8	9
16	Role of Mitochondrial Dynamics in Microglial Activation and Metabolic Switch. ImmunoHorizons, 2021, 5, 615-626.	0.8	9
17	Δ 9 â€ 1 etrahydrocannabinol promotes functional remyelination in the mouse brain. British Journal of Pharmacology, 2021, 178, 4176-4192.	2.7	11
18	Oligodendrocyte Differentiation and Myelination Is Potentiated via GABAB Receptor Activation. Neuroscience, 2020, 439, 163-180.	1.1	39

#	Article	IF	CITATIONS
19	Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome. Journal of Neuroscience, 2020, 40, 1453-1482.	1.7	204
20	CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease. Nature Communications, 2020, 11, 4885.	5.8	39
21	Contribution of P2X4 Receptors to CNS Function and Pathophysiology. International Journal of Molecular Sciences, 2020, 21, 5562.	1.8	43
22	In vivo PET Imaging of Gliogenesis After Cerebral Ischemia in Rats. Frontiers in Neuroscience, 2020, 14, 793.	1.4	10
23	Expression and Function of GABA Receptors in Myelinating Cells. Frontiers in Cellular Neuroscience, 2020, 14, 256.	1.8	31
24	Gene Expression Analysis of Astrocyte and Microglia Endocannabinoid Signaling during Autoimmune Demyelination. Biomolecules, 2020, 10, 1228.	1.8	27
25	Sephin1 Protects Neurons against Excitotoxicity Independently of the Integrated Stress Response. International Journal of Molecular Sciences, 2020, 21, 6088.	1.8	8
26	A Clonal NG2-Glia Cell Response in a Mouse Model of Multiple Sclerosis. Cells, 2020, 9, 1279.	1.8	9
27	P2X7 Receptors as a Therapeutic Target in Cerebrovascular Diseases. Frontiers in Molecular Neuroscience, 2020, 13, 92.	1.4	9
28	Functional and Metabolic Characterization of Microglia Culture in a Defined Medium. Frontiers in Cellular Neuroscience, 2020, 14, 22.	1.8	26
29	Mitochondrial division inhibitor 1 disrupts oligodendrocyte Ca ²⁺ homeostasis and mitochondrial function. Glia, 2020, 68, 1743-1756.	2.5	23
30	Early Effects of AÎ ² Oligomers on Dendritic Spine Dynamics and Arborization in Hippocampal Neurons. Frontiers in Synaptic Neuroscience, 2020, 12, 2.	1.3	29
31	Nâ€Methylâ€Dâ€Aspartate Receptor Antibodies in Autoimmune Encephalopathy Alter Oligodendrocyte Function. Annals of Neurology, 2020, 87, 670-676.	2.8	28
32	P2x7 receptors control demyelination and inflammation in the cuprizone model. Brain, Behavior, & Immunity - Health, 2020, 4, 100062.	1.3	11
33	Excitotoxicity therapy for stroke patients still alive. EBioMedicine, 2019, 39, 3-4.	2.7	7
34	Aβ oligomers promote oligodendrocyte differentiation and maturation via integrin β1 and Fyn kinase signaling. Cell Death and Disease, 2019, 10, 445.	2.7	49
35	Targeting P2X4 and P2X7 receptors in multiple sclerosis. Current Opinion in Pharmacology, 2019, 47, 119-125.	1.7	28
36	Glutamate receptors and white matter stroke. Neuroscience Letters, 2019, 694, 86-92.	1.0	27

#	Article	IF	CITATIONS
37	Purinergic receptors in multiple sclerosis pathogenesis. Brain Research Bulletin, 2019, 151, 38-45.	1.4	29
38	Microglial immune response is impaired against the neurotropic fungus <i>Lomentospora prolificans</i> . Cellular Microbiology, 2018, 20, e12847.	1.1	8
39	<i>In vivo</i> imaging of î'7 nicotinic receptors as a novel method to monitor neuroinflammation after cerebral ischemia. Clia, 2018, 66, 1611-1624.	2.5	20
40	Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1060-1069.	2.4	9
41	Synaptic activity protects against AD and FTD-like pathology via autophagic-lysosomal degradation. Molecular Psychiatry, 2018, 23, 1530-1540.	4.1	39
42	Clonal Clial Response in a Multiple Sclerosis Mouse Model. Frontiers in Cellular Neuroscience, 2018, 12, 375.	1.8	22
43	Contribution of Neurons and Glial Cells to Complement-Mediated Synapse Removal during Development, Aging and in Alzheimer's Disease. Mediators of Inflammation, 2018, 2018, 1-12.	1.4	54
44	Inhibition of Casein Kinase 2 Protects Oligodendrocytes From Excitotoxicity by Attenuating JNK/p53 Signaling Cascade. Frontiers in Molecular Neuroscience, 2018, 11, 333.	1.4	13
45	Re-examining the potential of targeting ABHD6 in multiple sclerosis: Efficacy of systemic and peripherally restricted inhibitors in experimental autoimmune encephalomyelitis. Neuropharmacology, 2018, 141, 181-191.	2.0	22
46	Aβ _{1–42} triggers the generation of a retrograde signaling complex from sentinel <scp>mRNA</scp> s in axons. EMBO Reports, 2018, 19, .	2.0	22
47	Inflammation in stroke: the role of cholinergic, purinergic and glutamatergic signaling. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641877426.	1.5	27
48	P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Molecular Medicine, 2018, 10, .	3.3	141
49	Deregulation of the endocannabinoid system and therapeutic potential of ABHD6 blockade in the cuprizone model of demyelination. Biochemical Pharmacology, 2018, 157, 189-201.	2.0	33
50	Mitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca2+ Signaling. Frontiers in Molecular Neuroscience, 2018, 11, 3.	1.4	74
51	Isolation, Expansion, and Maturation of Oligodendrocyte Lineage Cells Obtained from Rat Neonatal Brain and Optic Nerve. Methods in Molecular Biology, 2018, 1791, 95-113.	0.4	11
52	Mangiferin and Morin Attenuate Oxidative Stress, Mitochondrial Dysfunction, and Neurocytotoxicity, Induced by Amyloid Beta Oligomers. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	1.9	62
53	GATâ€1 mediated GABA uptake in rat oligodendrocytes. Glia, 2017, 65, 514-522.	2.5	18
54	In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiology of Disease, 2017, 103, 101-112.	2.1	96

#	Article	IF	CITATIONS
55	Inwardly Rectifying K+ Currents in Cultured Oligodendrocytes from Rat Optic Nerve are Insensitive to pH. Neurochemical Research, 2017, 42, 2443-2455.	1.6	9
56	Differential Molecular Targets for Neuroprotective Effect of Chlorogenic Acid and its Related Compounds Against Glutamate Induced Excitotoxicity and Oxidative Stress in Rat Cortical Neurons. Neurochemical Research, 2017, 42, 3559-3572.	1.6	48
57	Building Bridges through Science. Neuron, 2017, 96, 730-735.	3.8	2
58	Effects of FTY720 on brain neurogenic niches in vitro and after kainic acid-induced injury. Journal of Neuroinflammation, 2017, 14, 147.	3.1	15
59	BDNF and NGF Signalling in Early Phases of Psychosis: Relationship With Inflammation and Response to Antipsychotics After 1 Year. Schizophrenia Bulletin, 2016, 42, sbv078.	2.3	52
60	PET Imaging with [¹⁸ F]FSPG Evidences the Role of System xc ⁻ on Brain Inflammation Following Cerebral Ischemia in Rats. Theranostics, 2016, 6, 1753-1767.	4.6	37
61	Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders. Stem Cells International, 2016, 2016, 1-6.	1.2	10
62	Possible Therapeutic Doses of Cannabinoid Type 1 Receptor Antagonist Reverses Key Alterations in Fragile X Syndrome Mouse Model. Genes, 2016, 7, 56.	1.0	39
63	Cystine/glutamate antiporter blockage induces myelin degeneration. Glia, 2016, 64, 1381-1395.	2.5	19
64	Adenosine A1 receptor inhibits postnatal neurogenesis and sustains astrogliogenesis from the subventricular zone. Glia, 2016, 64, 1465-1478.	2.5	19
65	Amyloid βâ€induced astrogliosis is mediated by β1â€integrin via NADPH oxidase 2 in Alzheimer's disease. Aging Cell, 2016, 15, 1140-1152.	3.0	53
66	The link of inflammation and neurodegeneration in progressive multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 2016, 1, .	1.1	50
67	Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome. Molecular Brain, 2016, 9, 76.	1.3	17
68	Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron, 2016, 91, 119-132.	3.8	381
69	In vivo imaging of system xc- as a novel approach to monitor multiple sclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1124-1138.	3.3	20
70	Axon-to-Glia Interaction Regulates GABA _A Receptor Expression in Oligodendrocytes. Molecular Pharmacology, 2016, 89, 63-74.	1.0	43
71	Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLoS Biology, 2016, 14, e1002466.	2.6	140
72	PÃo del RÃo Hortega and the discovery of the oligodendrocytes. Frontiers in Neuroanatomy, 2015, 9, 92.	0.9	61

#	Article	IF	CITATIONS
73	Blockade of P2X7 Receptors or Pannexin-1 Channels Similarly Attenuates Postischemic Damage. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 843-850.	2.4	55
74	FTY720 attenuates excitotoxicity and neuroinflammation. Journal of Neuroinflammation, 2015, 12, 86.	3.1	92
75	<i>In Vivo</i> PET Imaging of the α4β2 Nicotinic Acetylcholine Receptor As a Marker for Brain Inflammation after Cerebral Ischemia. Journal of Neuroscience, 2015, 35, 5998-6009.	1.7	41
76	A rare P2X7 variant Arg307Gln with absent pore formation function protects against neuroinflammation in multiple sclerosis. Human Molecular Genetics, 2015, 24, 5644-5654.	1.4	53
77	Blockade of monoacylglycerol lipase inhibits oligodendrocyte excitotoxicity and prevents demyelination <i>in vivo</i> . Glia, 2015, 63, 163-176.	2.5	74
78	ATP Signaling in Brain: Release, Excitotoxicity and Potential Therapeutic Targets. Cellular and Molecular Neurobiology, 2015, 35, 1-6.	1.7	72
79	Subclinical Depressive Symptoms and Continued Cannabis Use: Predictors of Negative Outcomes in First Episode Psychosis. PLoS ONE, 2015, 10, e0123707.	1.1	22
80	CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death and Disease, 2014, 5, e1156-e1156.	2.7	56
81	A ₃ Adenosine receptors mediate oligodendrocyte death and ischemic damage to optic nerve. Clia, 2014, 62, 199-216.	2.5	41
82	P2X4 receptors control the fate and survival of activated microglia. Glia, 2014, 62, 171-184.	2.5	73
83	Editors' Preface: The Colourful White Matter. Glia, 2014, 62, 1747-1748.	2.5	1
84	Novel association of Neuregulin 1 gene with bipolar disorder but not with schizophrenia. Schizophrenia Research, 2014, 159, 552-553.	1.1	8
85	White matter injury: Ischemic and nonischemic. Glia, 2014, 62, 1780-1789.	2.5	88
86	Neurotransmitter signaling in white matter. Glia, 2014, 62, 1762-1779.	2.5	102
87	Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage. Journal of Clinical Investigation, 2014, 124, 3645-3655.	3.9	98
88	Differential Neuroprotective Effects of 5′-Deoxy-5′-Methylthioadenosine. PLoS ONE, 2014, 9, e90671.	1.1	13
89	Calcium Dyshomeostasis in White Matter Injury. , 2014, , 433-460.		0
90	White Matter Damage in Multiple Sclerosis. , 2014, , 405-429.		0

#	Article	IF	CITATIONS
91	Ischemia and Stroke. , 2014, , 413-435.		1
92	Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nature Medicine, 2013, 19, 603-607.	15.2	203
93	Plasma brain-derived neurotrophic factor levels, learning capacity and cognition in patients with first episode psychosis. BMC Psychiatry, 2013, 13, 27.	1.1	34
94	Relationship between negative symptoms and plasma levels of insulin-like growth factor 1 in first-episode schizophrenia and bipolar disorder patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 44, 29-33.	2.5	45
95	Ca ²⁺ â€dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid βâ€treated astrocytes and in a model of <scp>A</scp> lzheimer's disease. Aging Cell, 2013, 12, 292-302.	3.0	160
96	Zn ²⁺ â€induced ERK activation mediates PARPâ€1â€dependent ischemicâ€reoxygenation damage to oligodendrocytes. Glia, 2013, 61, 383-393.	2.5	36
97	Cytosolic zinc accumulation contributes to excitotoxic oligodendroglial death. Clia, 2013, 61, 750-764.	2.5	30
98	Protecting White Matter From Stroke Injury. Stroke, 2013, 44, 1204-1211.	1.0	83
99	Neurotransmitter signaling in the pathophysiology of microglia. Frontiers in Cellular Neuroscience, 2013, 7, 49.	1.8	127
100	1–42 β-Amyloid peptide requires PDK1/nPKC/Rac 1 pathway to induce neuronal death. Translational Psychiatry, 2013, 3, e219-e219.	2.4	44
101	NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation. Frontiers in Cellular Neuroscience, 2013, 7, 261.	1.8	24
102	Contribution of Pannexin1 to Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2013, 8, e66657.	1.1	59
103	Adenosine and Multiple Sclerosis. , 2013, , 435-457.		2
104	Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate. Cell Death and Disease, 2012, 3, e268-e268.	2.7	47
105	Serum IgG Antibodies Against the NR ₁ Subunit of the NMDA Receptor Not Detected in Schizophrenia. American Journal of Psychiatry, 2012, 169, 1120-1121.	4.0	93
106	Roles of White Matter in Central Nervous System Pathophysiologies. ASN Neuro, 2012, 4, AN20110060.	1.5	59
107	Calcium Dyshomeostasis in Astrocytes After Ischemia. , 2012, , 103-127.		0
108	A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis. Genes and Immunity, 2012, 13, 21-28.	2.2	56

#	Article	IF	CITATIONS
109	P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiology of Disease, 2012, 45, 954-961.	2.1	165
110	Therapeutic Potential of Kainate Receptors. CNS Neuroscience and Therapeutics, 2011, 17, 661-669.	1.9	46
111	Neuroglial interactions mediated by purinergic signalling in the pathophysiology of CNS disorders. Seminars in Cell and Developmental Biology, 2011, 22, 252-259.	2.3	38
112	Glutamate and ATP signalling in white matter pathology. Journal of Anatomy, 2011, 219, 53-64.	0.9	129
113	Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nature Neuroscience, 2011, 14, 345-350.	7.1	276
114	Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium, 2011, 49, 184-190.	1.1	192
115	Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium, 2011, 50, 468-472.	1.1	63
116	Increased expression of cystine/glutamate antiporter in multiple sclerosis. Journal of Neuroinflammation, 2011, 8, 63.	3.1	94
117	Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death. Journal of Biological Chemistry, 2011, 286, 11825-11836.	1.6	46
118	Bax and Calpain Mediate Excitotoxic Oligodendrocyte Death Induced by Activation of Both AMPA and Kainate Receptors. Journal of Neuroscience, 2011, 31, 2996-3006.	1.7	55
119	Role of Monoubiquitylation on the Control of ll̂ºBα Degradation and NF-κB Activity. PLoS ONE, 2011, 6, e25397.	1.1	16
120	Sistemas glutamatérgicos y sus posibilidades terapéuticas. , 2011, , 325-350.		0
121	P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia, 2010, 58, 730-740.	2.5	191
122	Increase in brain-derived neurotrophic factor in first episode psychotic patients after treatment with atypical antipsychotics. International Clinical Psychopharmacology, 2010, 25, 241-245.	0.9	54
123	Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia. Neurobiology of Disease, 2010, 37, 156-165.	2.1	33
124	Calcium dyshomeostasis in white matter pathology. Cell Calcium, 2010, 47, 150-157.	1.1	69
125	Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 2010, 47, 264-272.	1.1	318
126	Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia, 2010, 58, 1739-1747.	2.5	62

#	Article	IF	CITATIONS
127	An organotypic culture model to study nigro-striatal degeneration. Journal of Neuroscience Methods, 2010, 188, 205-212.	1.3	27
128	Expression of oligodendrocyte and myelin genes is not altered in peripheral blood cells of patients with firstâ€episode schizophrenia and bipolar disorder. Bipolar Disorders, 2010, 12, 107-109.	1.1	10
129	Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes. Cell Death and Disease, 2010, 1, e54-e54.	2.7	88
130	Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium, 2009, 45, 358-368.	1.1	169
131	Endoplasmic reticulum Ca2+ release through ryanodine and IP3 receptors contributes to neuronal excitotoxicity. Cell Calcium, 2009, 46, 273-281.	1.1	113
132	CB ₁ cannabinoid receptorâ€dependent and â€independent inhibition of depolarizationâ€induced calcium influx in oligodendrocytes. Glia, 2009, 57, 295-306.	2.5	42
133	Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons. NeuroToxicology, 2009, 30, 1053-1058.	1.4	49
134	Glutamate-Mediated Injury to White Matter: Mechanisms and Clinical Relevance. , 2009, , 1750-1753.		1
135	A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone. PLoS ONE, 2009, 4, e5278.	1.1	19
136	P2X7 Receptors in Oligodendrocytes: A Novel Target for Neuroprotection. Molecular Neurobiology, 2008, 38, 123-128.	1.9	62
137	GLTâ€l expression and Glu uptake in rat cerebral cortex are increased by phencyclidine. Glia, 2008, 56, 1320-1327.	2.5	29
138	Functional glutamate transport in rodent optic nerve axons and glia. Glia, 2008, 56, 1353-1367.	2.5	38
139	Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. Journal of Neuroimmunology, 2008, 195, 194-198.	1.1	51
140	A8-A17 Cell Groups (Dopaminergic Cell Groups). , 2008, , 2-2.		0
141	Pharmacogenomics of the response to IFN-β in multiple sclerosis: ramifications from the first genome-wide screen. Pharmacogenomics, 2008, 9, 639-645.	0.6	13
142	P2X ₇ Receptor Blockade Prevents ATP Excitotoxicity in Oligodendrocytes and Ameliorates Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2007, 27, 9525-9533.	1.7	356
143	Interaction between glutamate signalling and immune attack in damaging oligodendrocytes. Neuron Glia Biology, 2007, 3, 281-285.	2.0	19
144	System xcâ~' and Glutamate Transporter Inhibition Mediates Microglial Toxicity to Oligodendrocytes. Journal of Immunology, 2007, 178, 6549-6556.	0.4	147

#	Article	IF	CITATIONS
145	Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons. Neuroscience, 2007, 146, 350-365.	1.1	44
146	Decreased levels of plasma glutamate in patients with first-episode schizophrenia and bipolar disorder. Schizophrenia Research, 2007, 95, 174-178.	1.1	67
147	Glutamate exocytosis from astrocytes controls synaptic strength. Nature Neuroscience, 2007, 10, 331-339.	7.1	706
148	Glia: the fulcrum of brain diseases. Cell Death and Differentiation, 2007, 14, 1324-1335.	5.0	234
149	Excitotoxic damage to white matter. Journal of Anatomy, 2007, 210, 693-702.	0.9	216
150	Decreased levels of plasma BDNF in first-episode schizophrenia and bipolar disorder patients. Schizophrenia Research, 2006, 86, 321-322.	1.1	189
151	Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends in Molecular Medicine, 2006, 12, 289-292.	3.5	76
152	GLT-1 down-regulation induced by clozapine in rat frontal cortex is associated with synaptophysin up-regulation. Journal of Neurochemistry, 2006, 99, 134-141.	2.1	32
153	Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiology of Disease, 2006, 21, 154-164.	2.1	128
154	Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiology of Disease, 2006, 23, 374-386.	2.1	145
155	Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols. Glia, 2006, 53, 201-211.	2.5	72
156	Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia, 2006, 53, 212-224.	2.5	308
157	Interleukin-1β Enhances GABAA Receptor Cell-surface Expression by a Phosphatidylinositol 3-Kinase/Akt Pathway. Journal of Biological Chemistry, 2006, 281, 14632-14643.	1.6	111
158	Activation of Kainate Receptors Sensitizes Oligodendrocytes to Complement Attack. Journal of Neuroscience, 2006, 26, 3220-3228.	1.7	87
159	A novel alternative splicing form of excitatory amino acid transporter 1 is a negative regulator of glutamate uptake. Journal of Neurochemistry, 2005, 95, 341-348.	2.1	51
160	Calcium and glial cell death. Cell Calcium, 2005, 38, 417-425.	1.1	68
161	Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia, 2005, 49, 451-455.	2.5	115
162	Clozapine reduces GLT-1 expression and glutamate uptake in astrocyte cultures. Glia, 2005, 50, 276-279.	2.5	52

#	Article	IF	CITATIONS
163	Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition. Glia, 2005, 52, 36-46.	2.5	104
164	Multiple sclerosis: novel perspectives on newly forming lesions. Trends in Neurosciences, 2005, 28, 173-175.	4.2	64
165	Cross-talk between Native Plasmalemmal Na+/Ca2+ Exchanger and Inositol 1,4,5-Trisphosphate-sensitive Ca2+ Internal Store in Xenopus Oocytes. Journal of Biological Chemistry, 2004, 279, 52414-52424.	1.6	20
166	Neuroprotection by tetracyclines. Trends in Pharmacological Sciences, 2004, 25, 609-612.	4.0	189
167	Excitotoxic insults to the optic nerve alter visual evoked potentials. Neuroscience, 2004, 123, 441-449.	1.1	8
168	Development of a New Family of Conformationally Restricted Peptides as Potent Nucleators of β-Turns. Design, Synthesis, Structure, and Biological Evaluation of a β-Lactam Peptide Analogue of Melanostatin. Journal of the American Chemical Society, 2003, 125, 16243-16260.	6.6	54
169	Caspase-Dependent and Caspase-Independent Oligodendrocyte Death Mediated by AMPA and Kainate Receptors. Journal of Neuroscience, 2003, 23, 9519-9528.	1.7	134
170	Ca2+ Influx through AMPA or Kainate Receptors Alone Is Sufficient to Initiate Excitotoxicity in Cultured Oligodendrocytes. Neurobiology of Disease, 2002, 9, 234-243.	2.1	110
171	Activation of phospholipase D-2 by P2X7 agonists in rat submandibular gland acini. Journal of Lipid Research, 2002, 43, 1244-1255.	2.0	22
172	Excitotoxicity in glial cells. European Journal of Pharmacology, 2002, 447, 239-246.	1.7	117
173	Multiple angiotensin receptor subtypes in normal and tumor astrocytes in vitro. Glia, 2002, 39, 304-313.	2.5	41
174	The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends in Neurosciences, 2001, 24, 224-230.	4.2	320
175	Differential Expression of Calcium Channel Subtypes in the Bovine Adrenal Medulla. Neuroendocrinology, 2001, 74, 251-261.	1.2	24
176	Angiotensin receptor-like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes. Glia, 2001, 35, 131-146.	2.5	34
177	The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Molecular Psychiatry, 2001, 6, 380-386.	4.1	93
178	Altered Expression of the Glutamate Transporter EAAC1 in Neurons and Immature Oligodendrocytes after Transient Forebrain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 678-687.	2.4	49
179	lonotropic glutamate receptor subunits are differentially regulated in the motoneuronal pools of the rat hypoglossal nucleus in response to axotomy. Journal of Neurocytology, 2000, 29, 509-523.	1.6	14
180	Immunohistochemical localization of the P2Y1 purinergic receptor in neurons and glial cells of the central nervous system. Molecular Brain Research, 2000, 78, 50-58.	2.5	130

#	Article	IF	CITATIONS
181	KA1-like kainate receptor subunit immunoreactivity in neurons and glia using a novel anti-peptide antibody. Molecular Brain Research, 2000, 81, 164-176.	2.5	23
182	Expression of glutamate transporters in rat optic nerve oligodendrocytes. European Journal of Neuroscience, 1999, 11, 2226-2236.	1.2	116
183	Ionotropic glutamate receptor subunit distribution on hypoglossal motoneuronal pools in the rat. Journal of Neurocytology, 1999, 28, 455-468.	1.6	25
184	Regulation by P2 agonists of the intracellular calcium concentration in epithelial cells freshly isolated from rat trachea. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1439, 395-405.	1.2	17
185	Expression of nerve growth factor in astrocytes of the hippocampal CA1 area following transient forebrain ischemia. Neuroscience, 1999, 91, 1027-1034.	1.1	26
186	Expression of glutamate transporters in the adult bovine corpus callosum. Molecular Brain Research, 1999, 67, 296-302.	2.5	56
187	Reduced editing of low-affinity kainate receptor subunits in optic nerve glial cells. Molecular Brain Research, 1999, 73, 104-109.	2.5	6
188	On How Altered Glutamate Homeostasis May Contribute to Demyelinating Diseases of the Cns. Advances in Experimental Medicine and Biology, 1999, , 98-107.	0.8	12
189	AMPA and Kainate Receptors Each Mediate Excitotoxicity in Oligodendroglial Cultures. Neurobiology of Disease, 1999, 6, 475-485.	2.1	142
190	Postnatal development of perisomatic GABAergic axon terminals on neurons projecting from area 17 to area 18 of the cat visual cortex. Visual Neuroscience, 1999, 16, 35-44.	0.5	3
191	AMPA-selective glutamate receptor subunits in glial cells of the adult bovine white matter. Molecular Brain Research, 1998, 53, 270-276.	2.5	45
192	Cloning and Expression of a P2yPurinoceptor from the Adult Bovine Corpus Callosum. Neurobiology of Disease, 1998, 5, 259-270.	2.1	13
193	Characteristics of acute and chronic kainate excitotoxic damage to the optic nerve. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10229-10234.	3.3	116
194	Activation by P2X7 Agonists of Two Phospholipases A2 (PLA2) in Ductal Cells of Rat Submandibular Gland. Journal of Biological Chemistry, 1998, 273, 30208-30217.	1.6	91
195	mRNAs coding for neurotransmitter receptors and voltage-gated sodium channels in the adult rabbit visual cortex after monocular deafferentiation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3257-3262.	3.3	5
196	Expression and Function of Neurotransmitter Receptors in Glial Cells of the Central Nervous System. , 1998, , 167-183.		1
197	Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8830-8835.	3.3	329
198	Neurons in the Rat Occipital Cortex Co-expressing the Substance P-Receptor and GABA: a Comparison BetweenIn Vivoand Organotypic Cultures. European Journal of Neuroscience, 1997, 9, 1530-1535.	1.2	10

#	Article	IF	CITATIONS
199	Expression of Ionotropic Glutamate Receptor Subunits in Glial Cells of the Hippocampal CA1 Area following Transient Forebrain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 290-300.	2.4	133
200	Anatomical evidence for glutamate and/or aspartate as neurotransmitters in the geniculo-, claustro-, and cortico-cortical pathways to the cat striate cortex. , 1996, 373, 422-432.		15
201	Expression of Kainate-selective Glutamate Receptor Subunits in Glial Cells of the Adult Bovine White Matter. European Journal of Neuroscience, 1996, 8, 2379-2387.	1.2	78
202	Localization of AMPA-selective glutamate receptor subunits in the adult cat visual cortex. Visual Neuroscience, 1996, 13, 61-72.	0.5	23
203	Preparation of a monoclonal antibody to a glycidic epitope of the epidermal growth factor receptor that recognizes inhibitors of astrocyte proliferation and reactive microglia. Journal of Neuroscience Research, 1995, 40, 776-786.	1.3	9
204	Glutamate receptors in astrocytic end-feet. NeuroReport, 1994, 5, 1205-1208.	0.6	35
205	Expression of neurotransmitter receptors and Ca2+ channels in the adult fornix and optic nerve. NeuroReport, 1994, 5, 1457-1460.	0.6	13
206	Gamma-aminobutyric acid-immunoreactive neurons in the rat trigeminal nuclei. Histochemistry, 1993, 99, 49-55.	1.9	60
207	Neurotransmitter receptors and voltage-dependent Ca2+ channels encoded by mRNA from the adult corpus callosum Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 3270-3274.	3.3	49
208	The contribution of GABA-ergic neurons to horizontal intrinsic connections in upper layers of the cat's striate cortex. Experimental Brain Research, 1991, 85, 235-9.	0.7	32
209	A serum factor that activates the phosphatidylinositol phosphate signaling system in Xenopus oocytes Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1521-1525.	3.3	90
210	Clutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus and cerebellum by monoclonal antibody and sensitive staining method. Histochemistry, 1989, 90, 427-445.	1.9	127
211	Postnatal development of parvalbumin-, calbindin- and adult GABA-immunoreactivity in two visual nuclei of zebra finches. Brain Research, 1988, 475, 205-217.	1.1	52
212	Distribution of GABA-like immunoreactivity in the pigeon brain. Neuroscience, 1988, 25, 931-950.	1.1	112
213	Monoclonal antibodies demonstrating GABA-like immunoreactivity. Histochemistry, 1986, 86, 147-157.	1.9	141
214	Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry, 1986, 84, 207-216.	1.9	138
215	Selective retrograde labeling with D-[3H]-aspartate in afferents to the mammalian superior colliculus. Journal of Comparative Neurology, 1985, 241, 34-49.	0.9	82
216	Selective retrograde labeling in some afferents to the rabbit lateral geniculate nucleus following injections of tritiated neurotransmitter-related compounds. Neuroscience Letters, 1985, 53, 9-14.	1.0	12

#	Article	lF	CITATIONS
217	Utility of Organotypic Slices in Parkinson's Disease Research. , 0, , .		1
218	Linking Plasma Amyloid Beta and Neurofilament Light Chain to Intracortical Myelin Content in Cognitively Normal Older Adults. Frontiers in Aging Neuroscience, 0, 14, .	1.7	2