Wafa T Al-Jamal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1759287/publications.pdf Version: 2024-02-01

<u> Νλλέν Τ Δι-Ινμαι</u>

#	Article	IF	CITATIONS
1	Mild hyperthermia accelerates doxorubicin clearance from tumour-extravasated temperature-sensitive liposomes. Nanotheranostics, 2022, 6, 230-242.	2.7	10
2	Encapsulation of doxorubicin prodrug in heat-triggered liposomes overcomes off-target activation for advanced prostate cancer therapy. Acta Biomaterialia, 2022, 140, 530-546.	4.1	12
3	Biocompatible hydroxy double salts as delivery matrices for non-steroidal anti-inflammatory and anti-epileptic drugs. Applied Clay Science, 2022, 221, 106456.	2.6	5
4	Intravenous Administration of Scutellarin Nanoparticles Augments the Protective Effect against Cerebral Ischemia–Reperfusion Injury in Rats. Molecular Pharmaceutics, 2022, 19, 1410-1421.	2.3	10
5	Genetically-engineered anti-PSMA exosome mimetics targeting advanced prostate cancer in vitro and in vivo. Journal of Controlled Release, 2021, 330, 101-110.	4.8	27
6	Nanoprecipitation preparation of low temperature-sensitive magnetoliposomes. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111453.	2.5	8
7	PD1 blockade potentiates the therapeutic efficacy of photothermally-activated and MRI-guided low temperature-sensitive magnetoliposomes. Journal of Controlled Release, 2021, 332, 419-433.	4.8	11
8	Magneto-Erythrocyte Membrane Vesicles' Superior T2 MRI Contrast Agents to Magneto-Liposomes. Magnetochemistry, 2021, 7, 51.	1.0	2
9	Dually targeted bioinspired nanovesicle delays advanced prostate cancer tumour growth in vivo. Acta Biomaterialia, 2021, 134, 559-575.	4.1	7
10	Hypoxia-targeted cupric-tirapazamine liposomes potentiate radiotherapy in prostate cancer spheroids. International Journal of Pharmaceutics, 2021, 607, 121018.	2.6	11
11	Cytotoxicity of Mechanochemically Prepared Cu(II) Complexes. ACS Sustainable Chemistry and Engineering, 2020, 8, 15243-15249.	3.2	13
12	Encapsulated doxorubicin crystals influence lysolipid temperature-sensitive liposomes release and therapeutic efficacy in vitro and in vivo. Journal of Controlled Release, 2020, 328, 665-678.	4.8	14
13	Magneto-Liposomes as MRI Contrast Agents: A Systematic Study of Different Liposomal Formulations. Nanomaterials, 2020, 10, 889.	1.9	28
14	EGFR-targeted immunoliposomes efficiently deliver docetaxel to prostate cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111185.	2.5	38
15	Enhanced selectivity, cellular uptake, and <i>in vitro</i> activity of an intrinsically fluorescent copper–tirapazamine nanocomplex for hypoxia targeted therapy in prostate cancer. Biomaterials Science, 2020, 8, 2420-2433.	2.6	14
16	Liposome-Templated Indocyanine Green J- Aggregates for <i>In Vivo</i> Near Infrared Imaging and Stable Photothermal Heating. Nanotheranostics, 2020, 4, 91-106.	2.7	36
17	Organ Biodistribution of Radiolabelled γδT Cells Following Liposomal Alendronate Administration in Different Mouse Tumour Models. Nanotheranostics, 2020, 4, 71-82.	2.7	12
18	Microfluidic Production of Lysolipid-Containing Temperature-Sensitive Liposomes. Journal of Visualized Experiments, 2020, , .	0.2	1

Wafa T Al-Jamal

#	Article	IF	CITATIONS
19	Sterically stabilized liposomes production using staggered herringbone micromixer: Effect of lipid content. International Journal of Pharmaceutics, 2019, 566, 687-696.	2.6	32
20	Intracellular Activation of a Prostate Specific Antigen-Cleavable Doxorubicin Prodrug: A Key Feature Toward Prodrug-Nanomedicine Design. Molecular Pharmaceutics, 2019, 16, 1573-1585.	2.3	11
21	Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy. Journal of Controlled Release, 2017, 253, 82-96.	4.8	67
22	Investigating in vitro and in vivo $\hat{l}\pm v\hat{l}^26$ integrin receptor-targeting liposomal alendronate for combinatory $\hat{l}^3\hat{l}$ T cell immunotherapy. Journal of Controlled Release, 2017, 256, 141-152.	4.8	25
23	Fluorinated tranylcypromine analogues as inhibitors of lysine-specific demethylase 1 (LSD1, KDM1A). Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2099-2101.	1.0	22
24	Core-shell Semiconductor Nanocrystals: Effect of Composition, Size, Surface Coatings on their Optical Properties, Toxicity and Pharmacokinetics. Current Pharmaceutical Design, 2017, 23, 340-349.	0.9	4
25	Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid Tumours <i>In Vivo</i> . Theranostics, 2016, 6, 342-356.	4.6	55
26	In vitro potency, in vitro and in vivo efficacy of liposomal alendronate in combination with γδT cell immunotherapy in mice. Journal of Controlled Release, 2016, 241, 229-241.	4.8	25
27	Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans. Nano Letters, 2016, 16, 5652-5660.	4.5	140
28	Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release. International Journal of Pharmaceutics, 2016, 514, 133-141.	2.6	37
29	Real-time monitoring of magnetic drug targeting using fibered confocal fluorescence microscopy. Journal of Controlled Release, 2016, 244, 240-246.	4.8	19
30	Docetaxel-loaded liposomes: The effect of lipid composition and purification on drug encapsulation and in vitro toxicity. International Journal of Pharmaceutics, 2016, 514, 150-159.	2.6	64
31	Synthesis of Diagnostic Silicon Nanoparticles for Targeted Delivery of Thiourea to Epidermal Growth Factor Receptor-Expressing Cancer Cells. ACS Applied Materials & Interfaces, 2016, 8, 8908-8917.	4.0	22
32	Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo. Small, 2015, 11, 4704-4722.	5.2	94
33	Design of Cationic Multiwalled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication. Bioconjugate Chemistry, 2015, 26, 1370-1379.	1.8	58
34	Cationic Liposome- Multi-Walled Carbon Nanotubes Hybrids for Dual siPLK1 and Doxorubicin Delivery In Vitro. Pharmaceutical Research, 2015, 32, 3293-3308.	1.7	25
35	Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2014, 8, 1384-1401.	7.3	155
36	Cationic Poly- <scp>l</scp> -lysine Dendrimer Complexes Doxorubicin and Delays Tumor Growth <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 1905-1917.	7.3	124

Wafa T Al-Jamal

#	Article	IF	CITATIONS
37	Autophagy and formation of tubulovesicular autophagosomes provide a barrier against nonviral gene delivery. Autophagy, 2013, 9, 667-682.	4.3	54
38	Anti-angiogenic poly-L-lysine dendrimer binds heparin and neutralizes its activity. Results in Pharma Sciences, 2012, 2, 9-15.	4.2	21
39	Lipid–Peptide Vesicle Nanoscale Hybrids for Triggered Drug Release by Mild Hyperthermia <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2012, 6, 9335-9346.	7.3	212
40	Liposome–Gold Nanorod Hybrids for High-Resolution Visualization Deep in Tissues. Journal of the American Chemical Society, 2012, 134, 13256-13258.	6.6	77
41	Pharmacokinetics & tissue distribution of temperature-sensitive liposomal doxorubicin in tumor-bearing mice triggered with mild hyperthermia. Biomaterials, 2012, 33, 4608-4617.	5.7	103
42	Liposomes: From a Clinically Established Drug Delivery System to a Nanoparticle Platform for Theranostic Nanomedicine. Accounts of Chemical Research, 2011, 44, 1094-1104.	7.6	606
43	Intracellular trafficking and gene expression of pH-sensitive, artificially enveloped adenoviruses in vitro and in vivo. Biomaterials, 2011, 32, 3085-3093.	5.7	36
44	Enhanced cellular internalization and gene silencing with a series of cationic dendronâ€multiwalled carbon nanotube:siRNA complexes. FASEB Journal, 2010, 24, 4354-4365.	0.2	71
45	Tumor Targeting of Functionalized Quantum Dotâ	2.3	111
46	Blood Circulation and Tissue Biodistribution of Lipidâ^'Quantum Dot (L-QD) Hybrid Vesicles Intravenously Administered in Mice. Bioconjugate Chemistry, 2009, 20, 1696-1702.	1.8	55
47	Functionalizedâ€Quantumâ€Dot–Liposome Hybrids as Multimodal Nanoparticles for Cancer. Small, 2008, 4, 1406-1415.	5.2	178
48	Interfacing Functionalized Carbon Nanohorns with Primary Phagocytic Cells. Advanced Materials, 2008, 20, 2421-2426.	11.1	48
49	Lipidâ~'Quantum Dot Bilayer Vesicles Enhance Tumor Cell Uptake and Retention <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2008, 2, 408-418.	7.3	141
50	Construction of nanoscale multicompartment liposomes for combinatory drug delivery. International Journal of Pharmaceutics, 2007, 331, 182-185.	2.6	42