Salvador Arenas-Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1759224/publications.pdf

Version: 2024-02-01

23 papers

443 citations

933447 10 h-index 752698 20 g-index

24 all docs

24 docs citations

times ranked

24

510 citing authors

#	Article	IF	CITATIONS
1	Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecological Modelling, 2021, 456, 109671.	2.5	123
2	Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Science of the Total Environment, 2020, 709, 136161.	8.0	55
3	Integration of satellite remote sensing data in ecosystem modelling at local scales: Practices and trends. Methods in Ecology and Evolution, 2018, 9, 1810-1821.	5.2	48
4	Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling. PLoS ONE, 2018, 13, e0199292.	2.5	36
5	Remotely Sensed Variables of Ecosystem Functioning Support Robust Predictions of Abundance Patterns for Rare Species. Remote Sensing, 2019, 11, 2086.	4.0	28
6	Cross-scale monitoring of habitat suitability changes using satellite time series and ecological niche models. Science of the Total Environment, 2021, 784, 147172.	8.0	20
7	Combining Satellite Remote Sensing and Climate Data in Species Distribution Models to Improve the Conservation of Iberian White Oaks (Quercus L.). ISPRS International Journal of Geo-Information, 2020, 9, 735.	2.9	15
8	Ecological Niche Models Reveal Climate Change Effect on Biogeographical Regions: The Iberian Peninsula as a Case Study. Climate, 2020, 8, 42.	2.8	15
9	Ecosystem Services in a Protected Mountain Range of Portugal: Satellite-Based Products for State and Trend Analysis. Remote Sensing, 2018, 10, 1573.	4.0	14
10	Mapping wild pear trees (<i>Pyrus bourgaeana</i>) in Mediterranean forest using high-resolution QuickBird satellite imagery. International Journal of Remote Sensing, 2013, 34, 3376-3396.	2.9	12
11	Model-Assisted Bird Monitoring Based on Remotely Sensed Ecosystem Functioning and Atlas Data. Remote Sensing, 2020, 12, 2549.	4.0	12
12	Using remotely sensed indicators of primary productivity to improve prioritization of conservation areas for top predators. Ecological Indicators, 2021, 125, 107503.	6.3	10
13	Mainstreaming remotely sensed ecosystem functioning in ecological niche models. Remote Sensing in Ecology and Conservation, 2022, 8, 431-447.	4.3	10
14	Evaluation and Comparison of QuickBird and ADS40-SH52 Multispectral Imagery for Mapping Iberian Wild Pear Trees (Pyrus bourgaeana, Decne) in a Mediterranean Mixed Forest. Forests, 2014, 5, 1304-1330.	2.1	9
15	Effects of input data sources on species distribution model predictions across species with different distributional ranges. Journal of Biogeography, 2022, 49, 1299-1312.	3.0	9
16	A Method For Tree-Ring Analysis Using <i>Diva-Gis </i> Freeware On Scanned Core Images. Tree-Ring Research, 2015, 71, 118-129.	0.6	8
17	Shifts in climatic realised niches of Iberian species. Oikos, 2022, 2022, .	2.7	7
18	Ecosystem Functioning Influences Species Fitness at Upper Trophic Levels. Ecosystems, 2022, 25, 1037-1051.	3.4	5

#	Article	IF	CITATIONS
19	Structure of ages, sizes and growth in a local population of the Iberian wild pear (Cordoba, Spain). Ecosistemas, 2015, 24, 7-14.	0.4	3
20	SDM-CropProj – A model-assisted framework to forecast crop environmental suitability and fruit production. MethodsX, 2021, 8, 101394.	1.6	2
21	Population structure and fruit production of Pyrus bourgaeana D. are affected by land-use. Acta Oecologica, 2016, 77, 91-99.	1.1	1
22	A bottom-up practitioner-derived set of Essential Variables for Protected Area management. Environmental and Sustainability Indicators, 2022, 14, 100179.	3.3	1
23	Comparaison de deux approches de mesure de cernes utilisant les outils système d'information géographique (SIG) sur des images à haute résolution de bois tropicaux. Canadian Journal of Forest Research, 2018, 48, 1543-1553.	1.7	0