Haijun Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1758648/publications.pdf

Version: 2024-02-01

		279798	2	114414
38	3,444 citations	23		32
papers	citations	h-index		g-index
38	38	38		2565
30	30	30		2303
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 2005, 169, 313-321.	3.6	630
2	Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 2014, 34, 455-472.	5.3	429
3	Silicon in Agriculture., 2015,,.		236
4	Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L Frontiers in Plant Science, 2016, 7, 196.	3.6	181
5	Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry, 2014, 78, 27-36.	5.8	177
6	The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiologiae Plantarum, 2012, 34, 1589-1594.	2.1	147
7	Role of Silicon in Mediating Salt Tolerance in Plants: A Review. Plants, 2019, 8, 147.	3.5	131
8	Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L Plant Cell Reports, 2015, 34, 1629-1646.	5.6	128
9	Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	127
10	Cation Specificity of Vacuolar NHX-Type Cation/H ⁺ Antiporters. Plant Physiology, 2019, 179, 616-629.	4.8	119
11	Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. Journal of Plant Physiology, 2013, 170, 847-853.	3.5	115
12	Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiology and Biochemistry, 2020, 156, 209-220.	5.8	91
13	Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis. Plant Physiology and Biochemistry, 2020, 152, 53-61.	5.8	81
14	Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicology and Environmental Safety, 2019, 169, 8-17.	6.0	77
15	Tomato roots have a functional silicon influx transporter but not a functional silicon efflux transporter. Plant, Cell and Environment, 2020, 43, 732-744.	5.7	72
16	The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L. under salt stress. Plant and Soil, 2016, 406, 231-249.	3.7	70
17	Isolation and functional characterization of <i>CsLsi1</i> , a silicon transporter gene in <i>Cucumis sativus</i> . Physiologia Plantarum, 2017, 159, 201-214.	5.2	70
18	Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Frontiers in Plant Science, 2015, 6, 453.	3.6	68

#	Article	IF	Citations
19	Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. Ecotoxicology and Environmental Safety, 2019, 174, 245-254.	6.0	60
20	Water-Soluble Carbon Nanoparticles Improve Seed Germination and Post-Germination Growth of Lettuce under Salinity Stress. Agronomy, 2020, 10, 1192.	3.0	59
21	Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny. Journal of Experimental Botany, 2011, 62, 989-999.	4.8	57
22	Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene. Annals of Botany, 2018, 122, 641-648.	2.9	53
23	Silicon can improve seed germination and ameliorate oxidative damage of bud seedlings in cucumber under salt stress. Acta Physiologiae Plantarum, 2020, 42, 1.	2.1	37
24	The expression response of plasma membrane aquaporins to salt stress in tomato plants. Environmental and Experimental Botany, 2020, 178, 104190.	4.2	34
25	SIHY5 is a necessary regulator of the cold acclimation response in tomato. Plant Growth Regulation, 2020, 91, 1-12.	3.4	31
26	Structure and Expression Analysis of Sucrose Phosphate Synthase, Sucrose Synthase and Invertase Gene Families in Solanum lycopersicum. International Journal of Molecular Sciences, 2021, 22, 4698.	4.1	28
27	Silicon-Mediated Tolerance to Salt Stress. , 2015, , 123-142.		20
28	Silicon reduces long-term cadmium toxicities in potted garlic plants. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	19
29	Foliar application of silicon and selenium improves the growth, yield and quality characteristics of cucumber in field conditions. Scientia Horticulturae, 2022, 294, 110776.	3.6	18
30	The salicylic acid mediates selenium-induced tolerance to drought stress in tomato plants. Scientia Horticulturae, 2022, 300, 111092.	3.6	18
31	Silicon and Insect Pest Resistance. , 2015, , 197-207.		13
32	Silicon delays salt stress-induced senescence by increasing cytokinin synthesis in tomato. Scientia Horticulturae, 2022, 293, 110750.	3.6	12
33	Maintenance of root water uptake contributes to salt-tolerance of a wild tomato species under salt stress. Archives of Agronomy and Soil Science, 2021, 67, 205-217.	2.6	9
34	An efficient protocol for Agrobacterium-mediated genetic transformation of Antirrhinum majus. Plant Cell, Tissue and Organ Culture, 2020, 142, 527-536.	2.3	8
35	Silicon alleviates mercury toxicity in garlic plants. Journal of Plant Nutrition, 2020, 43, 2508-2517.	1.9	8
36	History and Introduction of Silicon Research. , 2015, , 1-18.		7

#	Article	IF	CITATIONS
37	Silicon-Mediated Tolerance to Drought and Low-Temperature Stress. , 2015, , 143-159.		4
38	Over-expression of SICycA3 gene in Arabidopsis accelerated the cell cycle transition. Functional Plant Biology, 2014, 41, 659.	2.1	0