Christian T Stoeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1758557/publications.pdf

Version: 2024-02-01

567247 477281 43 901 15 29 citations h-index g-index papers 44 44 44 1077 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pathophysiology of LV Remodeling Following STEMI. JACC: Cardiovascular Imaging, 2023, 16, 159-171.	5.3	5
2	Emerging Techniques in Cardiac Magnetic Resonance Imaging. Journal of Magnetic Resonance Imaging, 2022, 55, 1043-1059.	3.4	14
3	Detection of Intramyocardial Iron in Patients Following ST â€Elevation Myocardial Infarction Using Cardiac Diffusion Tensor Imaging. Journal of Magnetic Resonance Imaging, 2022, , .	3.4	2
4	Validation of cardiac diffusion tensor imaging sequences: A multicentre test–retest phantom study. NMR in Biomedicine, 2022, 35, e4685.	2.8	2
5	Comparison of interpolation methods of predominant cardiomyocyte orientation from in vivo and ex vivo cardiac diffusion tensor imaging data. NMR in Biomedicine, 2022, 35, e4667.	2.8	2
6	Synthetically trained convolutional neural networks for improved tensor estimation from free-breathing cardiac DTI. Computerized Medical Imaging and Graphics, 2022, 99, 102075.	5.8	3
7	Insight Into Myocardial Microstructure of Athletes and Hypertrophic Cardiomyopathy Patients Using Diffusion Tensor Imaging. Journal of Magnetic Resonance Imaging, 2021, 53, 73-82.	3.4	13
8	CMR Diffusion Tensor Imaging Provides Novel Imaging Markers of Adverse Myocardial Remodeling in Aortic Stenosis. JACC: Cardiovascular Imaging, 2021, 14, 1472-1474.	5. 3	9
9	Acute Microstructural Changes after ST-Segment Elevation Myocardial Infarction Assessed with Diffusion Tensor Imaging. Radiology, 2021, 299, 86-96.	7.3	13
10	Investigating the reference domain influence in personalised models of cardiac mechanics. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1579-1597.	2.8	8
11	A 3D personalized cardiac myocyte aggregate orientation model using MRI data-driven low-rank basis functions. Medical Image Analysis, 2021, 71, 102064.	11.6	5
12	Septaly Oriented Mild Aortic Regurgitant Jets Negatively Influence Left Ventricular Blood Flowâ€"Insights From 4D Flow MRI Animal Study. Frontiers in Cardiovascular Medicine, 2021, 8, 711099.	2.4	3
13	Cardiovascular magnetic resonance imaging of functional and microstructural changes of the heart in a longitudinal pig model of acute to chronic myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 103.	3.3	18
14	Motionâ€Induced Signal Loss in In Vivo Cardiac Diffusionâ€Weighted Imaging. Journal of Magnetic Resonance Imaging, 2020, 51, 319-320.	3.4	7
15	Analysis and correction of offâ€resonance artifacts in echoâ€planar cardiac diffusion tensor imaging. Magnetic Resonance in Medicine, 2020, 84, 2561-2576.	3.0	9
16	Motion and eddy current–induced signal dephasing in in vivo cardiac DTI. Magnetic Resonance in Medicine, 2020, 84, 277-288.	3.0	4
17	Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 56.	3.3	37
18	On probing intravoxel incoherent motion in the heartâ€spinâ€echo versus stimulatedâ€echo DWI. Magnetic Resonance in Medicine, 2019, 82, 1150-1163.	3.0	16

#	Article	IF	CITATIONS
19	Left ventricular blood flow patterns at rest and under dobutamine stress in healthy pigs. NMR in Biomedicine, 2019, 32, e4022.	2.8	11
20	Myocardial Scar Delineation Using Diffusion Tensor Magnetic Resonance Tractography. Journal of the American Heart Association, 2018, 7 , .	3.7	39
21	Direct comparison of in vivo versus postmortem secondâ€order motionâ€compensated cardiac diffusion tensor imaging. Magnetic Resonance in Medicine, 2018, 79, 2265-2276.	3.0	20
22	Enhancing intravoxel incoherent motion parameter mapping in the brain using ⟨i⟩k⟨/i⟩â€⟨i⟩b⟨/i⟩ PCA. NMR in Biomedicine, 2018, 31, e4008.	2.8	7
23	Secondâ€order motion compensated <scp>PRESS</scp> for cardiac spectroscopy. Magnetic Resonance in Medicine, 2017, 77, 57-64.	3.0	7
24	Maximum likelihood estimation of cardiac fiber bundle orientation from arbitrarily spaced diffusion weighted images. Medical Image Analysis, 2017, 39, 56-77.	11.6	9
25	Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart. Magnetic Resonance in Medicine, 2016, 76, 862-872.	3.0	53
26	Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	58
27	Secondâ€order motionâ€compensated spin echo diffusion tensor imaging of the human heart. Magnetic Resonance in Medicine, 2016, 75, 1669-1676.	3.0	90
28	Bayesian intravoxel incoherent motion parameter mapping in the human heart. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 85.	3.3	20
29	Direct comparison of in-vivo and post-mortem spin-echo based diffusion tensor imaging in the porcine heart. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P76.	3.3	1
30	Cardiac Fibers Estimation from Arbitrarily Spaced Diffusion Weighted MRI. Lecture Notes in Computer Science, 2015, , 198-206.	1.3	3
31	Simultaneous Denoising and Registration forÂAccurate Cardiac Diffusion Tensor Reconstruction from MRI. Lecture Notes in Computer Science, 2015, , 215-222.	1.3	4
32	Dual-Phase Cardiac Diffusion Tensor Imaging with Strain Correction. PLoS ONE, 2014, 9, e107159.	2.5	72
33	Highâ€resolution diffusion tensor imaging of the human kidneys using a freeâ€breathing, multiâ€slice, targeted field of view approach. NMR in Biomedicine, 2014, 27, 1300-1312.	2.8	21
34	Compensation of signal loss due to cardiac motion in pointâ€resolved spectroscopy of the heart. Magnetic Resonance in Medicine, 2014, 72, 1201-1207.	3.0	16
35	Microstructural Impact of Ischemia and Bone Marrow–Derived Cell Therapy Revealed With Diffusion Tensor Magnetic Resonance Imaging Tractography of the Heart In Vivo. Circulation, 2014, 129, 1731-1741.	1.6	65
36	Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture. European Radiology, 2014, 24, 2810-2818.	4.5	25

3

#	Article	IF	Citations
37	Characterization and correction of eddy-current artifacts in unipolar and bipolar diffusion sequences using magnetic field monitoring. Journal of Magnetic Resonance, 2014, 244, 74-84.	2.1	27
38	In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing. Medical Image Analysis, 2013, 17, 1243-1255.	11.6	101
39	Analysis of 3D cardiac deformations with 3D SinMod. , 2013, 2013, 4386-9.		8
40	In vivo myofibre architecture in the systemic right ventricle. European Heart Journal, 2013, 34, 3640-3640.	2.2	9
41	Undersampled Cine 3D tagging for rapid assessment of cardiac motion. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 66.	3.3	12
42	Optimization of onâ€resonant magnetization transfer contrast in coronary vein MRI. Magnetic Resonance in Medicine, 2010, 64, 1849-1854.	3.0	5
43	In vivo Human 3D Cardiac Fibre Architecture: Reconstruction Using Curvilinear Interpolation of Diffusion Tensor Images. Lecture Notes in Computer Science, 2010, 13, 418-425.	1.3	48