John N Crowley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1758074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O _x , HO _x , NO _x and SO _x species. Atmospheric Chemistry and Physics, 2004, 4, 1461-1738.	4.9	1,597
2	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species. Atmospheric Chemistry and Physics, 2006, 6, 3625-4055.	4.9	1,508
3	Atmospheric oxidation capacity sustained by a tropical forest. Nature, 2008, 452, 737-740.	27.8	864
4	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens. Atmospheric Chemistry and Physics, 2007, 7, 981-1191.	4.9	317
5	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates. Atmospheric Chemistry and Physics, 2010, 10, 9059-9223.	4.9	312
6	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	4.9	307
7	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species. Atmospheric Chemistry and Physics, 2008, 8, 4141-4496.	4.9	221
8	The Comparative Reactivity Method – a new tool to measure total OH Reactivity in ambient air. Atmospheric Chemistry and Physics, 2008, 8, 2213-2227.	4.9	188
9	Direct detection of OH formation in the reactions of HO ₂ with CH ₃ C(O)O ₂ and other substituted peroxy radicals. Atmospheric Chemistry and Physics, 2008, 8, 4877-4889.	4.9	181
10	Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nature Geoscience, 2012, 5, 190-193.	12.9	170
11	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates. Atmospheric Chemistry and Physics, 2013, 13, 8045-8228.	4.9	167
12	Ozone decomposition on Saharan dust: an experimental investigation. Atmospheric Chemistry and Physics, 2003, 3, 119-130.	4.9	146
13	Rate Coefficients for Reaction of OH with Acetone between 202 and 395 K. Journal of Physical Chemistry A, 2000, 104, 2695-2705.	2.5	136
14	Mass-Independent Oxygen Isotope Fractionation in Atmospheric CO as a Result of the Reaction CO + OH. , 1998, 281, 544-546.		135
15	Significant concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and anthropogenic emissions. Geophysical Research Letters, 2012, 39, .	4.0	116
16	Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2012, 12, 8257-8270.	4.9	111
17	Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany. Atmospheric Chemistry and Physics, 2010, 10, 2795-2812.	4.9	97
18	Interaction of methanol, acetone and formaldehyde with ice surfaces between 198 and 223 K. Physical Chemistry Chemical Physics, 2002, 4, 5270-5275.	2.8	94

#	Article	IF	CITATIONS
19	The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual mineral and clay mineral components. Physical Chemistry Chemical Physics, 2001, 3, 2474-2482.	2.8	81
20	The interaction of N ₂ O ₅ with mineral dust: aerosol flow tube and Knudsen reactor studies. Atmospheric Chemistry and Physics, 2008, 8, 91-109.	4.9	78
21	The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Technology, 2017, 51, 2519-2528.	10.0	75
22	Determination of the Adsorption Isotherm of Methanol on the Surface of Ice. An Experimental and Grand Canonical Monte Carlo Simulation Study. Journal of the American Chemical Society, 2006, 128, 15300-15309.	13.7	72
23	OH Formation in the Photoexcitation of NO2 beyond the Dissociation Threshold in the Presence of Water Vapor. Journal of Physical Chemistry A, 1997, 101, 4178-4184.	2.5	71
24	Estimating N ₂ O ₅ coefficients using ambient measurements of NO ₃ , N ₂ O ₅ , ClNO ₂ and particle-phase nitrate. Atmospheric Chemistry and Physics 2016 16 1323113249	4.9	71
25	Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO. Atmospheric Chemistry and Physics, 2016, 16, 14475-14493.	4.9	69
26	Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes. Atmospheric Chemistry and Physics, 2013, 13, 1129-1139.	4.9	67
27	A cavity ring down/cavity enhanced absorption device for measurement of ambient NO ₃ and N ₂ O ₅ . Atmospheric Measurement Techniques. 2009. 2. 1-13.	3.1	66
28	Direct Kinetic Study of OH and O ₃ Formation in the Reaction of CH ₃ C(O)O ₂ with HO ₂ . Journal of Physical Chemistry A, 2014, 118, 974-985.	2.5	58
29	Simulations of atmospheric OH, O ₃ and NO ₃ reactivities within and above the boreal forest. Atmospheric Chemistry and Physics, 2015, 15, 3909-3932.	4.9	57
30	Variable lifetimes and loss mechanisms for NO ₃ and N ₂ O ₅ during the DOMINO campaign: contrasts between marine, urban and continental air. Atmospheric Chemistry and Physics, 2011, 11, 10853-10870.	4.9	55
31	Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII – Criegee intermediates. Atmospheric Chemistry and Physics, 2020, 20, 13497-13519.	4.9	55
32	Interaction of formic and acetic acid with ice surfaces between 187 and 227 K. Investigation of single species- and competitive adsorption. Physical Chemistry Chemical Physics, 2008, 10, 2345.	2.8	54
33	Laser induced fluorescence studies of iodine oxide chemistry : Part II. The reactions of IO with CH3O2, CF3O2 and O3. Physical Chemistry Chemical Physics, 2006, 8, 5185.	2.8	53
34	Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model. Atmospheric Chemistry and Physics, 2012, 12, 4843-4854.	4.9	52
35	Kinetics and mechanism of the heterogeneous reaction of N2O5 with mineral dust particles. Physical Chemistry Chemical Physics, 2012, 14, 8551.	2.8	52
36	Adsorption Isotherm of Formic Acid on the Surface of Ice, as Seen from Experiments and Grand Canonical Monte Carlo Simulation. Journal of Physical Chemistry C, 2008, 112, 8976-8987.	3.1	51

#	Article	IF	CITATIONS
37	Uptake of NO ₃ and N ₂ O ₅ to Saharan dust, ambient urban aerosol and soot: a relative rate study. Atmospheric Chemistry and Physics, 2010, 10, 2965-2974.	4.9	51
38	Chemical and meteorological influences on the lifetime of NO ₃ at a semi-rural mountain site during PARADE. Atmospheric Chemistry and Physics, 2016, 16, 4867-4883.	4.9	51
39	Influence of summertime deep convection on formaldehyde in the middle and upper troposphere over Europe. Journal of Geophysical Research, 2006, 111, .	3.3	50
40	Intercomparison of NO ₃ radical detection instruments in the atmosphere simulation chamber SAPHIR. Atmospheric Measurement Techniques, 2013, 6, 1111-1140.	3.1	49
41	Reaction between OH and CH3CHO. Physical Chemistry Chemical Physics, 2002, 4, 3628-3638.	2.8	48
42	A two-channel thermal dissociation cavity ring-down spectrometer for the detection of ambient NO ₂ , RO ₂ NO ₂ and RONO ₂ . Atmospheric Measurement Techniques, 2016, 9, 553-576.	3.1	48
43	Direct measurement of NO ₃ radical reactivity in a boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 3799-3815.	4.9	45
44	Reaction of HO with hydroxyacetone (HOCH2C(O)CH3): rate coefficients (233–363 K) and mechanism. Physical Chemistry Chemical Physics, 2006, 8, 236-246.	2.8	44
45	Reaction between OH and HCHO: temperature dependent rate coefficients (202–399 K) and product pathways (298 K). Physical Chemistry Chemical Physics, 2003, 5, 4821-4827.	2.8	43
46	Net ozone production and its relationship to nitrogen oxides and volatile organic compounds in the marine boundary layer around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2020, 20, 6769-6787.	4.9	43
47	A five-channel cavity ring-down spectrometer for the detection of NO ₂ , NO ₃ , N ₂ O ₅ , total peroxy nitrates and total alkyl nitrates. Atmospheric Measurement Techniques, 2016, 9, 5103-5118.	3.1	42
48	Photolysis of CH3C(O)CH3 (248 nm, 266 nm), CH3C(O)C2H5 (248 nm) and CH3C(O)Br (248 nm): pressure dependent quantum yields of CH3 formation. Physical Chemistry Chemical Physics, 2007, 9, 4098.	2.8	41
49	Shipborne measurements of total OH reactivity around the Arabian Peninsula and its role in ozone chemistry. Atmospheric Chemistry and Physics, 2019, 19, 11501-11523.	4.9	40
50	Uptake and reaction of HOI and IONO2 on frozen and dry NaCl/NaBr surfaces and H2SO4. Physical Chemistry Chemical Physics, 2001, 3, 1679-1687.	2.8	38
51	Is the hydroxyl radical formed in the gas-phase ozonolysis of alkenes?. Geophysical Research Letters, 1997, 24, 1611-1614.	4.0	37
52	Day and night-time formation of organic nitrates at a forested mountain site in south-west Germany. Atmospheric Chemistry and Physics, 2017, 17, 4115-4130.	4.9	36
53	Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean. Atmospheric Chemistry and Physics, 2017, 17, 9547-9566.	4.9	35
54	Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HO _{<i>x</i>} measurements over Cyprus. Atmospheric Chemistry and Physics, 2018, 18, 10825-10847.	4.9	35

#	Article	IF	CITATIONS
55	Non-methane hydrocarbon (C ₂ –C ₈) sources and sinks around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2019, 19, 7209-7232.	4.9	35
56	Influence of vessel characteristics and atmospheric processes on the gas and particle phase of ship emission plumes: in situ measurements in the Mediterranean Sea and around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2020, 20, 4713-4734.	4.9	35
57	Reaction of Hydroxyl Radicals with C ₄ H ₅ N (Pyrrole): Temperature and Pressure Dependent Rate Coefficients. Journal of Physical Chemistry A, 2012, 116, 6051-6058.	2.5	34
58	Implications of the large carbon kinetic isotope effect in the reaction CH4+ Cl for the13C/12C ratio of stratospheric CH4. Geophysical Research Letters, 1996, 23, 2227-2230.	4.0	33
59	Reaction of HO2with ClO:Â Flow Tube Studies of Kinetics and Product Formation between 215 and 298 K. Journal of Physical Chemistry A, 2000, 104, 1674-1685.	2.5	32
60	Reaction of HO with Glycolaldehyde, HOCH2CHO:  Rate Coefficients (240â^'362 K) and Mechanism. Journal of Physical Chemistry A, 2007, 111, 897-908.	2.5	32
61	Reaction of O(3P) with the alkyl iodides: CF3I, CH3I, CH2I2, C2H5I, 1-C3H7I and 2-C3H7I. Physical Chemistry Chemical Physics, 2004, 6, 2172.	2.8	31
62	Heterogeneous reaction of N ₂ O ₅ with illite and Arizona test dust particles. Atmospheric Chemistry and Physics, 2014, 14, 245-254.	4.9	30
63	Evaluated kinetic and photochemical data for atmospheric chemistry: volume VIII – gas-phase reactions of organic species with four, or more, carbon atoms ( ≥  C _{4<td>an4p9gt;).</td><td>30</td>}	an4p9gt;).	30
64	Direct measurements of NO ₃ reactivity in and above the boundary layer of a mountaintop site: identification of reactive trace gases and comparison with OH reactivity. Atmospheric Chemistry and Physics, 2018, 18, 12045-12059.	4.9	29
65	Room temperature rate coefficient for the reaction between CH3O2 and NO3. International Journal of Chemical Kinetics, 1990, 22, 673-681.	1.6	28
66	Heterogeneous reactivity of NO and HNO3 on mineral dust in the presence of ozone. Physical Chemistry Chemical Physics, 2003, 5, 883-887.	2.8	28
67	Modelling the reversible uptake of chemical species in the gas phase by ice particles formed in a convective cloud. Atmospheric Chemistry and Physics, 2010, 10, 4977-5000.	4.9	28
68	The interaction of H2O2 with ice surfaces between 203 and 233 K. Physical Chemistry Chemical Physics, 2010, 12, 15544.	2.8	28
69	Insights into HO _{<i>x</i>} and RO _{<i>x</i>} chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide. Atmospheric Chemistry and Physics. 2018, 18, 13457-13479	4.9	28
70	Alkyl nitrates in the boreal forest: formation via the NO ₃ -, OH- and O ₃ -induced oxidation of biogenic volatile organic compounds and ambient lifetimes. Atmospheric Chemistry and Physics, 2019, 19, 10391-10403.	4.9	28
71	Reaction between OH and CH3CHO. Physical Chemistry Chemical Physics, 2003, 5, 106-111.	2.8	27
72	Heterogeneous reactions of HOI, ICl and IBr on sea salt and sea salt proxies. Physical Chemistry Chemical Physics, 2007, 9, 3136.	2.8	27

#	Article	IF	CITATIONS
73	Clyoxal measurement with a proton transfer reaction time of flight mass spectrometer (PTRâ€TOFâ€MS): characterization and calibration. Journal of Mass Spectrometry, 2017, 52, 30-35.	1.6	27
74	The atmospheric chemistry of sulphuryl fluoride, SO ₂ F ₂ . Atmospheric Chemistry and Physics, 2008, 8, 1547-1557.	4.9	24
75	A new marine biogenic emission: methane sulfonamide (MSAM), dimethyl sulfide (DMS), and dimethyl sulfone (DMSO ₂) measured in air over the Arabian Sea. Atmospheric Chemistry and Physics, 2020, 20, 6081-6094.	4.9	24
76	The reaction of IO with CH3SCH3: products and temperature dependent rate coefficients by laser induced fluorescence. Physical Chemistry Chemical Physics, 2006, 8, 847.	2.8	23
77	Removal of the potent greenhouse gas NF3 by reactions with the atmospheric oxidants O(1D), OH and O3. Physical Chemistry Chemical Physics, 2011, 13, 18600.	2.8	23
78	Shipborne measurements of ClNO ₂ in the Mediterranean Sea and around the Arabian Peninsula during summer. Atmospheric Chemistry and Physics, 2019, 19, 12121-12140.	4.9	23
79	Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition. Environmental Science & Technology, 2016, 50, 10823-10832.	10.0	22
80	Theoretical and experimental study of peroxy and alkoxy radicals in the NO ₃ -initiated oxidation of isoprene. Physical Chemistry Chemical Physics, 2021, 23, 5496-5515.	2.8	22
81	Comparison of N ₂ O ₅ mixing ratios during NO3Comp 2007 in SAPHIR. Atmospheric Measurement Techniques, 2012, 5, 2763-2777.	3.1	21
82	Pressure dependent OH yields in the reactions of CH3CO and HOCH2CO with O2. Physical Chemistry Chemical Physics, 2014, 16, 10990.	2.8	21
83	Chemical ionization quadrupole mass spectrometer with an electrical discharge ion source for atmospheric trace gas measurement. Atmospheric Measurement Techniques, 2019, 12, 1935-1954.	3.1	21
84	Pyruvic acid in the boreal forest: gas-phase mixing ratios and impact on radical chemistry. Atmospheric Chemistry and Physics, 2020, 20, 3697-3711.	4.9	19
85	Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical. Atmospheric Chemistry and Physics, 2021, 21, 10799-10824.	4.9	19
86	Absolute rate coefficients for the reactions of O(1D) with a series of n-alkanes. Chemical Physics Letters, 2007, 443, 12-16.	2.6	18
87	The detection of nocturnal N ₂ O ₅ as HNO ₃ by alkali- and aqueous-denuder techniques. Atmospheric Measurement Techniques. 2013. 6, 231-237	3.1	18
88	Temperature-(208–318 K) and pressure-(18–696 Torr) dependent rate coefficients for the reaction between OH and HNO ₃ . Atmospheric Chemistry and Physics, 2018, 18, 2381-2394.	4.9	18
89	Optical detection of NO3 and NO2 in ?pure? HNO3 vapor, the liquid-phase decomposition of HNO3. International Journal of Chemical Kinetics, 1993, 25, 795-803.	1.6	16
90	Measurement of ambient NO ₃ reactivity: design, characterization and first deployment of a new instrument. Atmospheric Measurement Techniques, 2017, 10, 1241-1258.	3.1	16

#	Article	IF	CITATIONS
91	Polycyclic aromatic hydrocarbons (PAHs) and their alkylated, nitrated and oxygenated derivatives in the atmosphere over the Mediterranean and Middle East seas. Atmospheric Chemistry and Physics, 2022, 22, 8739-8766.	4.9	16
92	Kinetic Investigations of the Reactions of CD3O2with NO and NO3at 298 K. The Journal of Physical Chemistry, 1996, 100, 17846-17854.	2.9	14
93	Photolysis of CH3C(O)CH3 at 248 and 266 nm: pressure and temperature dependent overall quantum yields. Physical Chemistry Chemical Physics, 2009, 11, 6173.	2.8	14
94	Adsorption isotherms for hydrogen chloride (HCl) on ice surfaces between 190 and 220 K. Physical Chemistry Chemical Physics, 2016, 18, 13799-13810.	2.8	14
95	Diurnal variability, photochemical production and loss processes of hydrogen peroxide in the boundary layer over Europe. Atmospheric Chemistry and Physics, 2019, 19, 11953-11968.	4.9	14
96	Measurements of carbonyl compounds around the Arabian Peninsula: overview and model comparison. Atmospheric Chemistry and Physics, 2020, 20, 10807-10829.	4.9	14
97	Modification of a conventional photolytic converter for improving aircraft measurements of NO ₂ via chemiluminescence. Atmospheric Measurement Techniques, 2021, 14, 6759-6776.	3.1	14
98	OH kinetics and photochemistry of HNO3 in the presence of water vapor. Chemical Physics Letters, 2001, 341, 93-98.	2.6	13
99	Kinetics and mechanism of the reaction of perfluoro propyl vinyl ether (PPVE,) Tj ETQq1 1 0.784314 rgBT /Overlo Physical Chemistry Chemical Physics, 2015, 17, 18558-18566.	ck 10 Tf 5 2.8	50 427 Td (C< 12
100	Laser-induced fluorescence-based detection of atmospheric nitrogen dioxide and comparison of different techniques during the PARADEÂ2011 field campaign. Atmospheric Measurement Techniques, 2019, 12, 1461-1481.	3.1	12
101	Reactive nitrogen around the Arabian Peninsula and in the Mediterranean Sea during the 2017 AQABA ship campaign. Atmospheric Chemistry and Physics, 2021, 21, 7473-7498.	4.9	12
102	lodide CIMS and <i>m</i> â^• <i>z</i> 62: the detection of HNO ₃ as NO ₃ ^{â^^} in the presence of PAN, peroxyacetic acid and ozone. Atmospheric Measurement Techniques, 2021, 14, 5319-5332.	3.1	12
103	Does acetone react with HO ₂ in the upper-troposphere?. Atmospheric Chemistry and Physics, 2012, 12, 1339-1351.	4.9	11
104	Opinion: The germicidal effect of ambient air (open-air factor) revisited. Atmospheric Chemistry and Physics, 2021, 21, 13011-13018.	4.9	11
105	Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe. Atmospheric Chemistry and Physics, 2021, 21, 18413-18432.	4.9	11
106	Diel peroxy radicals in a semi-industrial coastal area: nighttime formation of free radicals. Atmospheric Chemistry and Physics, 2013, 13, 5731-5749.	4.9	10
107	Theoretical study of the OH-initiated atmospheric oxidation mechanism of perfluoro methyl vinyl ether, CF ₃ OCFi€CF ₂ . Physical Chemistry Chemical Physics, 2015, 17, 28697-28704.	2.8	10
108	Temperature-dependent rate coefficients for the reactions of the hydroxyl radical with the atmospheric biogenics isoprene, alpha-pinene and delta-3-carene. Atmospheric Chemistry and Physics, 2017, 17, 15137-15150.	4.9	10

#	Article	IF	CITATIONS
109	Evolution of NO ₃ reactivity during the oxidation of isoprene. Atmospheric Chemistry and Physics, 2020, 20, 10459-10475.	4.9	10
110	Measurement of NO _{<i>x</i>} and NO _{<i>y</i>} with a thermal dissociation cavity ring-down spectrometer (TD-CRDS): instrument characterisation and first deployment. Atmospheric Measurement Techniques, 2020, 13, 5739-5761.	3.1	10
111	Kinetics of the OH + NO ₂ reaction: effect of water vapour an new parameterization for global modelling. Atmospheric Chemistry and Physics, 2020, 20, 3091-3105.	d _{4.9}	9
112	Pressure dependent photolysis quantum yields for CH3C(O)CH3 at 300 and 308 nm and at 298 and 228 K. Physical Chemistry Chemical Physics, 2013, 15, 10500. Reactive quenching of electronically excited	2.8	8
113	NO<sub>2</sub><sup>â ⁻ —</sup> and NO<sub>3</sub><sup>â ⁻ —</sup> by H ₂ O as potential sources of atmospheric HO _{<kamp;gt;x<: kamp;gt;xamp;lt:="" sub=""> radicals. Atmospheric</kamp;gt;x<:>}	4.9	8
	Kinetics of the OH + NO ₂ reaction: rate coefficients (217–.	333 k	ζ,) Tj ETQq0
114	O ₂ bath gases. Atmospheric Chemistry and Physics, 2019, 19, 10643-10657.	4.9	8
115	Trapping of HCl and oxidised organic trace gases in growing ice at temperatures relevant to cirrus clouds. Atmospheric Chemistry and Physics, 2019, 19, 11939-11951.	4.9	7
116	The TDLAS instrument for the detection of total inorganic chlorine in the stratosphere. Geophysical Research Letters, 1996, 23, 3611-3614.	4.0	6
117	Rate coefficients for the reactions CH ₃ + Br ₂ (224–358 K), CH ₃ CO + Br ₂ (228 and 298 K), and Cl + Br ₂ (228 and 298 K). International Journal of Chemical Kinetics, 2010, 42, 575-585.	1.6	6
118	Atmospheric chemistry, sources and sinks of carbon suboxide, C ₃ O ₂ . Atmospheric Chemistry and Physics, 2017, 17, 8789-8804.	4.9	6
119	Products and mechanism of the OH-initiated photo-oxidation of perfluoro ethyl vinyl ether, C ₂ F ₅ OCFi€€F ₂ . Physical Chemistry Chemical Physics, 2018, 20, 11306-11316.	2.8	5
120	Kinetic and mechanistic study of the reaction between methane sulfonamide (CH ₃ S(O) ₂ NH <sub and OH. Atmospheric Chemistry and Physics, 2020, 20, 2695-2707.</sub 	& ao np;gt;2	2
121	Reaction between CH ₃ C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism. Atmospheric Chemistry and Physics, 2020, 20, 13541-13555.	4.9	5
122	Determination of product branching ratio of the ClO selfâ€reaction at 298 K. Geophysical Research Letters, 1993, 20, 1423-1426.	4.0	4
123	Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements. Atmospheric Chemistry and Physics, 2022, 22, 7051-7069.	4.9	4
124	Measurement report: Observation-based formaldehyde production rates and their relation to OH reactivity around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2021, 21, 17373-17388.	4.9	3
125	Kinetics of OH + SO ₂ + M: temperature-dependent coefficients in the fall-off regime and the influence of water vapour. Atmospheric Chemistry and Physics, 2022, 22, 4969-4984.	rate 4.9	3
126	Absolute and relative-rate measurement of the rate coefficient for reaction of perfluoro ethyl vinyl ether (C ₂ F ₅ OCFĩ€€F ₂) with OH. Physical Chemistry Chemical Physics, 2018, 20, 3761-3767.	2.8	2

#	Article	IF	CITATIONS
127	IUPAC in the (real) clouds. Chemistry International, 2018, 40, 10-13.	0.3	1
128	Impact of pyruvic acid photolysis on acetaldehyde and peroxy radical formation in the boreal forest: theoretical calculations and model results. Atmospheric Chemistry and Physics, 2021, 21, 14333-14349.	4.9	1
129	Rate Coefficients for OH + NO (+N ₂) in the Fall-off Regime and the Impact of Water Vapor. Journal of Physical Chemistry A, 2022, 126, 3863-3872.	2.5	1
130	Reaction of HO and DO with 2-vinylfuran. Physical Chemistry Chemical Physics, 2003, 5, 4612.	2.8	0
131	Impact of ozone and inlet design on the quantification of isoprene-derived organic nitrates by thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Atmospheric Measurement Techniques, 2021, 14, 5501-5519.	3.1	0
132	Characterization of two photon excited fragment spectroscopy (TPEFS) for HNO3 detection in gas-phase kinetic experiments. Physical Chemistry Chemical Physics, 2021, 23, 6397-6407.	2.8	0