
Barbara Cortese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1757452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces. Langmuir, 2008, 24, 2712-2718.	3.5	238
2	Superhydrophobic fabrics for oil–water separation through a diamond like carbon (DLC) coating. Journal of Materials Chemistry A, 2014, 2, 6781-6789.	10.3	164
3	Influence of electrotaxis on cell behaviour. Integrative Biology (United Kingdom), 2014, 6, 817-830.	1.3	126
4	Reversibly Lightâ€Switchable Wettability of Hybrid Organic/Inorganic Surfaces With Dual Microâ€∕Nanoscale Roughness. Advanced Functional Materials, 2009, 19, 1149-1157.	14.9	115
5	Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose, 2014, 21, 741-756.	4.9	88
6	Ultra Hydrophobic/Superhydrophilic Modified Cotton Textiles through Functionalized Diamond-Like Carbon Coatings for Self-Cleaning Applications. Langmuir, 2013, 29, 2775-2783.	3.5	85
7	Influence of Chemistry and Topology Effects on Superhydrophobic CF ₄ -Plasma-Treated Poly(dimethylsiloxane) (PDMS). Langmuir, 2008, 24, 1833-1843.	3.5	75
8	Microglia shape presynaptic properties at developing glutamatergic synapses. Glia, 2019, 67, 53-67.	4.9	72
9	Defective microglial development in the hippocampus of Cx3cr1 deficient mice. Frontiers in Cellular Neuroscience, 2015, 09, 111.	3.7	65
10	Underwater Wenzel and Cassie oleophobic behaviour. Journal of Materials Chemistry A, 2015, 3, 3854-3861.	10.3	59
11	Mechanical Gradient Cues for Guided Cell Motility and Control of Cell Behavior on Uniform Substrates. Advanced Functional Materials, 2009, 19, 2961-2968.	14.9	55
12	Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA. Lab on A Chip, 2011, 11, 2455.	6.0	52
13	Environmental stimuli shape microglial plasticity in glioma. ELife, 2017, 6, .	6.0	51
14	Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Scientific Reports, 2017, 7, 12672.	3.3	44
15	Characterisation of an irreversible bonding process for COC–COC and COC–PDMS–COC sandwich structures and application to microvalves. Sensors and Actuators B: Chemical, 2011, 160, 1473-1480.	7.8	43
16	A brief review of surface-functionalized cotton fabrics. Surface Innovations, 2013, 1, 140-156.	2.3	42
17	Controlling the Wettability of Hierarchically Structured Thermoplastics. Langmuir, 2012, 28, 896-904.	3.5	40
18	Flame retardant properties of plasma pre-treated/diamond-like carbon (DLC) coated cotton fabrics. Cellulose, 2015, 22, 2797-2809.	4.9	40

BARBARA CORTESE

#	Article	IF	CITATIONS
19	Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation. Applied Surface Science, 2018, 427, 81-91.	6.1	40
20	Bioinspired design of a photoresponsive superhydrophobic/oleophilic surface with underwater superoleophobic efficacy. Journal of Materials Chemistry A, 2014, 2, 17666-17675.	10.3	39
21	mRNA delivery using non-viral PCL nanoparticles. Biomaterials Science, 2015, 3, 144-151.	5.4	39
22	Development of superhydrophobic, self-cleaning, and flame-resistant DLC/TiO2 melamine sponge for application in oil–water separation. Journal of Materials Science, 2020, 55, 2846-2859.	3.7	39
23	Biomimetic Nanocarriers for Cancer Target Therapy. Bioengineering, 2020, 7, 111.	3.5	34
24	Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment. Antioxidants, 2020, 9, 700.	5.1	30
25	Argon and hydrogen plasma influence on the protective properties of diamond-like carbon films as barrier coating. Surfaces and Interfaces, 2017, 6, 60-71.	3.0	29
26	Smart conservation methodology for the preservation of copper-based objects against the hazardous corrosion. Thin Solid Films, 2017, 622, 130-135.	1.8	27
27	Influence of variable substrate geometry on wettability and cellular responses. Journal of Colloid and Interface Science, 2013, 394, 582-589.	9.4	24
28	The Glycoside Oleandrin Reduces Glioma Growth with Direct and Indirect Effects on Tumor Cells. Journal of Neuroscience, 2017, 37, 3926-3939.	3.6	23
29	Engineering Transfer of Micro- and Nanometer-Scale Features by Surface Energy Modification. Langmuir, 2009, 25, 7025-7031.	3.5	22
30	Organic light emitting diodes with highly conductive micropatterned polymer anodes. Organic Electronics, 2008, 9, 401-406.	2.6	21
31	ATP release during cell swelling activates a Ca2+-dependent Clâ^' current by autocrine mechanism in mouse hippocampal microglia. Scientific Reports, 2017, 7, 4184.	3.3	21
32	Antibiotics Treatment Modulates Microglia–Synapses Interaction. Cells, 2021, 10, 2648.	4.1	17
33	Microenvironmental Rigidity of 3D Scaffolds and Influence on Glioblastoma Cells: A Biomaterial Design Perspective. Frontiers in Bioengineering and Biotechnology, 2018, 6, 131.	4.1	16
34	Wool-Like Hollow Polymeric Nanoparticles for CML Chemo-Combinatorial Therapy. Pharmaceutics, 2018, 10, 52.	4.5	16
35	Erythrocytes and Nanoparticles: New Therapeutic Systems. Applied Sciences (Switzerland), 2021, 11, 2173.	2.5	16
36	Nanoparticles for Diagnosis and Target Therapy in Pediatric Brain Cancers. Diagnostics, 2022, 12, 173.	2.6	16

3

BARBARA CORTESE

#	Article	IF	CITATIONS
37	Sustained anti-BCR-ABL activity with pH responsive imatinib mesylate loaded PCL nanoparticles in CML cells. MedChemComm, 2015, 6, 212-221.	3.4	15
38	Dimethyl Fumarate Reduces Microglia Functional Response to Tissue Damage and Favors Brain Iron Homeostasis. Neuroscience, 2020, 439, 241-254.	2.3	15
39	Hybrid Clustered Nanoparticles for Chemo-Antibacterial Combinatorial Cancer Therapy. Cancers, 2019, 11, 1338.	3.7	14
40	The influence of polydimethylsiloxane curing ratio on capillary pressure in microfluidic devices. Applied Surface Science, 2012, 258, 8032-8039.	6.1	11
41	Coupled delivery of imatinib mesylate and doxorubicin with nanoscaled polymeric vectors for a sustained downregulation of BCR-ABL in chronic myeloid leukemia. Biomaterials Science, 2015, 3, 361-372.	5.4	10
42	Capsid-like biodegradable poly-glycolic acid nanoparticles for a long-time release of nucleic acid molecules. Materials Advances, 2021, 2, 310-321.	5.4	9
43	Micro-chemical and -morphological features of heat treated plasma sprayed zirconia-based thermal barrier coatings. Thin Solid Films, 2013, 549, 321-329.	1.8	8
44	Cell mechanotactic and cytotoxic response to zinc oxide nanorods depends on substrate stiffness. Toxicology Research, 2016, 5, 1699-1710.	2.1	8
45	3D Culture Modeling of Metastatic Breast Cancer Cells in Additive Manufactured Scaffolds. ACS Applied Materials & amp; Interfaces, 2022, 14, 28389-28402.	8.0	8
46	Group II–VI Semiconductors. , 2019, , 397-464.		7
47	Mechanical Durotactic Environment Enhances Specific Glioblastoma Cell Responses. Cancers, 2019, 11, 643.	3.7	7
48	Understanding the metal free alginate gelation process. RSC Advances, 2021, 11, 34449-34455.	3.6	4
49	Infection Rate of Respiratory Viruses in the Pandemic SARS-CoV-2 Period Considering Symptomatic Patients: Two Years of Ongoing Observations. Biomolecules, 2022, 12, 987.	4.0	4
50	Unconventional tailorable patterning by solvent-assisted surface-tension-driven lithography. Journal of Colloid and Interface Science, 2015, 446, 44-52.	9.4	3
51	Nanostructuring Iridium Complexes into Crystalline Phosphorescent Nanoparticles: Structural Characterization, Photophysics, and Biological Applications. ACS Applied Bio Materials, 2019, 2, 4594-4603.	4.6	3
52	Time-lapse Whole-field Fluorescence Imaging of Microglia Processes Motility in Acute Mouse Hippocampal Slices and Analysis. Bio-protocol, 2019, 9, e3220.	0.4	3
53	Reversible wettability of hybrid organic/inorganic surfaces of systems upon light irradiation/storage cycles. International Journal of Nanomanufacturing, 2010, 6, 312.	0.3	2
54	Gene therapy with nonviral poly(ε-caprolactone) nanoparticles. Therapeutic Delivery, 2015, 6, 769-771.	2.2	2

#	ARTICLE	IF	CITATIONS
55	Dexamethasone delivery with coated calcium carbonate microcubes for sustained growth of osteoblasts. Rendiconti Lincei, 2015, 26, 239-244.	2.2	1
56	Mechanical guidance of cell migration. , 0, , 563-580.		1
57	MOS Meets NEMS: The Born of Hybrid Devices. , 2018, , .		0
58	Processing Techniques. , 2019, , 37-93.		0
59	Hybrid Polyelectrolyte Nanocomplexes for Non-Viral Gene Delivery with Favorable Efficacy and Safety Profile. Pharmaceutics, 2022, 14, 1310.	4.5	0