
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1757424/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Contribution of the oocyte to embryo quality. Theriogenology, 2006, 65, 126-136.                                                                                                                                            | 2.1 | 436       |
| 2  | Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Molecular Reproduction and Development, 1995, 41, 54-62.                                                    | 2.0 | 390       |
| 3  | Timing of Nuclear Progression and Protein Synthesis Necessary for Meiotic Maturation of Bovne<br>Oocytes1. Biology of Reproduction, 1989, 40, 1257-1263.                                                                    | 2.7 | 273       |
| 4  | The Culture of Bovine Oocytes to Obtain Developmentally Competent Embryos1. Biology of Reproduction, 1988, 39, 546-552.                                                                                                     | 2.7 | 261       |
| 5  | Thiols prevent H2O2-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology, 2001, 56, 275-286.                                                                                                         | 2.1 | 243       |
| 6  | Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiological Genomics, 2006, 28, 84-96.                                                      | 2.3 | 211       |
| 7  | Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Human Reproduction, 2008, 23, 1118-1127.                                                                    | 0.9 | 207       |
| 8  | Manipulation of Follicular Development to Produce Developmentally Competent Bovine Oocytes1.<br>Biology of Reproduction, 2002, 66, 38-43.                                                                                   | 2.7 | 192       |
| 9  | Quantification of Housekeeping Transcript Levels During the Development of Bovine Preimplantation Embryos1. Biology of Reproduction, 2002, 67, 1465-1472.                                                                   | 2.7 | 182       |
| 10 | Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology, 2003, 59, 939-949.                                                                            | 2.1 | 181       |
| 11 | Identification of Potential Markers of Oocyte Competence Expressed in Bovine Cumulus Cells Matured with Follicle-Stimulating Hormone and/or Phorbol Myristate Acetate In Vitro. Biology of Reproduction, 2008, 79, 209-222. | 2.7 | 172       |
| 12 | In vitro production of bovine embryos: Developmental competence is acquired before maturation.<br>Theriogenology, 1997, 47, 1061-1075.                                                                                      | 2.1 | 163       |
| 13 | In Vitro Inhibition of Oocyte Nuclear Maturation in the Bovine1. Biology of Reproduction, 1988, 39, 229-234.                                                                                                                | 2.7 | 148       |
| 14 | Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology, 2001, 55, 1241-1254.                                                                       | 2.1 | 146       |
| 15 | Making recombinant proteins in animals – different systems, different applications. Trends in<br>Biotechnology, 2003, 21, 394-399.                                                                                          | 9.3 | 122       |
| 16 | OMICS in assisted reproduction: possibilities and pitfalls. Molecular Human Reproduction, 2010, 16, 513-530.                                                                                                                | 2.8 | 113       |
| 17 | Effect of the Absence or Presence of Various Protein Supplements on Further Development of Bovine<br>Oocytes During In Vitro Maturation1. Biology of Reproduction, 2002, 66, 901-905.                                       | 2.7 | 112       |
| 18 | Oocyte maturation and IVF in cattle. Animal Reproduction Science, 1996, 42, 417-426.                                                                                                                                        | 1.5 | 109       |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Transcription Factor Expression Patterns in Bovine In Vitro-Derived Embryos Prior to<br>Maternal-Zygotic Transition1. Biology of Reproduction, 2004, 70, 1701-1709.                                                        | 2.7 | 108       |
| 20 | Reactive oxygen species-mediated loss of bovine sperm motility in egg yolk Tris extender: protection by<br>pyruvate, metal chelators and bovine liver or oviductal fluid catalase. Theriogenology, 2002, 57,<br>1105-1122. | 2.1 | 97        |
| 21 | Quantification of Histone Acetyltransferase and Histone Deacetylase Transcripts During Early Bovine<br>Embryo Development1. Biology of Reproduction, 2003, 68, 383-389.                                                    | 2.7 | 97        |
| 22 | Electroporation of bovine spermatozoa to carry foreign DNA in oocytes. Molecular Reproduction and Development, 1991, 29, 6-15.                                                                                             | 2.0 | 94        |
| 23 | Resumption of Meiosis is Initiated by the Accumulation of Cyclin B in Bovine Oocytes1. Biology of Reproduction, 1996, 55, 1427-1436.                                                                                       | 2.7 | 94        |
| 24 | Analysis of microRNAs and their precursors in bovine early embryonic development. Molecular Human<br>Reproduction, 2012, 18, 425-434.                                                                                      | 2.8 | 92        |
| 25 | Combining resources to obtain a comprehensive survey of the bovine embryo transcriptome through deep sequencing and microarrays. Molecular Reproduction and Development, 2011, 78, 651-664.                                | 2.0 | 91        |
| 26 | The time interval between FSH administration and ovarian aspiration influences the development of cattle oocytes. Theriogenology, 1999, 51, 699-708.                                                                       | 2.1 | 86        |
| 27 | Effects of follicular cells on oocyte maturation. II: Theca cell inhibition of bovine oocyte maturation in vitro. Biology of Reproduction, 1996, 54, 22-28.                                                                | 2.7 | 85        |
| 28 | Gene expression profile of cumulus cells derived from cumulus - oocyte complexes matured either in vivo or in vitro. Reproduction, Fertility and Development, 2009, 21, 451.                                               | 0.4 | 83        |
| 29 | In Vitro Fertilization of Bovine Follicular Oocytes Obtained by Laparoscopy1. Biology of Reproduction, 1985, 33, 487-494.                                                                                                  | 2.7 | 81        |
| 30 | Effect of Type 3 and Type 4 Phosphodiesterase Inhibitors on the Maintenance of Bovine Oocytes in<br>Meiotic Arrest1. Biology of Reproduction, 2002, 66, 180-184.                                                           | 2.7 | 81        |
| 31 | Impaired Maturation, Fertilization, and Embryonic Development of Porcine Oocytes Following<br>Exposure to an Environmentally Relevant Organochlorine Mixture1. Biology of Reproduction, 2001,<br>65, 554-560.              | 2.7 | 80        |
| 32 | Superovulation can reduce the developmental competence of bovine embryos. Theriogenology, 1996, 46, 1191-1203.                                                                                                             | 2.1 | 78        |
| 33 | The study of mammalian oocyte competence by transcriptome analysis: progress and challenges.<br>Molecular Human Reproduction, 2014, 20, 103-116.                                                                           | 2.8 | 77        |
| 34 | Granulosa Cells Inhibit the Resumption of Meiosis in Bovine Oocytes in Vitro1. Biology of Reproduction, 1990, 43, 777-783.                                                                                                 | 2.7 | 76        |
| 35 | Localization of the Chaperone Proteins GRP78 and HSP60 on the Luminal Surface of Bovine Oviduct<br>Epithelial Cells and Their Association with Spermatozoa1. Biology of Reproduction, 2004, 71, 1879-1889.                 | 2.7 | 76        |
| 36 | Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos<br>Completed Different Stages of Development In Vitro. PLoS ONE, 2015, 10, e0140467.                                             | 2.5 | 76        |

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ontogeny and Cellular Localization of 1251-Labeled Insulin-Like Growth Factor-I, 1251-Labeled<br>Follicle-Stimulating Hormone, and 1251-Labeled Human Chorionic Gonadotropin Binding Sites in<br>Ovaries from Bovine Fetuses and Neonatal Calves1. Biology of Reproduction, 1992, 47, 814-822. | 2.7 | 74        |
| 38 | Binding of a Bovine Oviductal Fluid Catalase to Mammalian Spermatozoa1. Biology of Reproduction, 1998, 58, 747-753.                                                                                                                                                                            | 2.7 | 74        |
| 39 | Differential Display and Suppressive Subtractive Hybridization Used to Identify Granulosa Cell<br>Messenger RNA Associated with Bovine Oocyte Developmental Competence1. Biology of Reproduction,<br>2001, 64, 1812-1820.                                                                      | 2.7 | 73        |
| 40 | Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. Journal of Assisted Reproduction and Genetics, 2011, 28, 173-188.                                                                                                             | 2.5 | 73        |
| 41 | Isolation of bovine herpesvirus-1 (BHV-1) and bovine viral diarrhea virus (BVDV) in association with the in vitro production of bovine embryos. Theriogenology, 1993, 40, 531-538.                                                                                                             | 2.1 | 71        |
| 42 | Genomic assessment of follicular marker genes as pregnancy predictors for human IVF. Molecular<br>Human Reproduction, 2010, 16, 87-96.                                                                                                                                                         | 2.8 | 70        |
| 43 | Fertilizing Ability of Bovine Spermatozoa Cocultured with Oviduct Epithelial Cells1. Biology of Reproduction, 1995, 52, 156-162.                                                                                                                                                               | 2.7 | 69        |
| 44 | Controlling meiotic resumption in bovine oocytes: A review. Theriogenology, 1998, 49, 483-497.                                                                                                                                                                                                 | 2.1 | 69        |
| 45 | The effect of heparin on motility parameters and protein phosphorylation during bovine sperm capacitation. Theriogenology, 2001, 55, 823-835.                                                                                                                                                  | 2.1 | 69        |
| 46 | Follicle environment and quality of in vitro matured oocytes. Journal of Assisted Reproduction and Genetics, 2011, 28, 483-488.                                                                                                                                                                | 2.5 | 69        |
| 47 | Effects of cumulus cells on male pronuclear formation and subsequent early development of bovine oocytes in vitro. Theriogenology, 1994, 41, 1499-1508.                                                                                                                                        | 2.1 | 68        |
| 48 | Analysis of Atresia in Bovine Follicles Using Different Methods: Flow Cytometry, Enzyme-Linked<br>Immunosorbent Assay, and Classic Histology1. Biology of Reproduction, 1996, 54, 631-637.                                                                                                     | 2.7 | 62        |
| 49 | Effects of follicular cells on oocyte maturation. I: Effects of follicular hemisections on bovine oocyte maturation in vitro. Biology of Reproduction, 1996, 54, 16-21.                                                                                                                        | 2.7 | 61        |
| 50 | Identification of Novel and Known Oocyte-Specific Genes Using Complementary DNA Subtraction and Microarray Analysis in Three Different Species1. Biology of Reproduction, 2005, 73, 63-71.                                                                                                     | 2.7 | 61        |
| 51 | Effect of cycloheximide, 6-DMAP, roscovitine and butyrolactone I on resumption of meiosis in porcine oocytes. Theriogenology, 2003, 60, 1049-1058.                                                                                                                                             | 2.1 | 60        |
| 52 | 40 years of bovine IVF in the new genomic selection context. Reproduction, 2018, 156, R1-R7.                                                                                                                                                                                                   | 2.6 | 60        |
| 53 | In vitro fertilization of bovine oocytes matured in vivo and collected at laparoscopy. Theriogenology, 1986, 25, 117-133.                                                                                                                                                                      | 2.1 | 59        |
| 54 | The sex ratios of bovine embryos produced in vivo and in vitro. Theriogenology, 1991, 36, 779-788.                                                                                                                                                                                             | 2.1 | 59        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The effect of sera, bovine serum albumin and follicular cells on in vitro maturation and fertilization of porcine oocytes. Theriogenology, 1992, 37, 779-790.                                                                                   | 2.1 | 57        |
| 56 | Genome-wide screening of DNA methylation in bovine blastocysts with different kinetics of development. Epigenetics and Chromatin, 2018, 11, 1.                                                                                                  | 3.9 | 56        |
| 57 | The time interval between FSH-P administration and slaughter can influence the developmental competence of beef heifer oocytes. Theriogenology, 1997, 48, 803-813.                                                                              | 2.1 | 55        |
| 58 | Expression of Cyclin B1 Messenger RNA Isoforms and Initiation of Cytoplasmic Polyadenylation in the Bovine Oocyte1. Biology of Reproduction, 2005, 72, 1037-1044.                                                                               | 2.7 | 55        |
| 59 | Individual bovine inÂvitro embryo production and cumulus cell transcriptomic analysis to distinguish<br>cumulus-oocyte complexes with high or low developmental potential. Theriogenology, 2015, 83,<br>228-237.                                | 2.1 | 54        |
| 60 | Effect of fresh or cultured follicular fractions on meiotic resumption in bovine oocytes.<br>Theriogenology, 1992, 37, 39-57.                                                                                                                   | 2.1 | 53        |
| 61 | In vitro-cultured bovine granulosa and oviductal cells secrete sperm motility-maintaining factor(s).<br>Molecular Reproduction and Development, 1994, 37, 54-60.                                                                                | 2.0 | 51        |
| 62 | Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology, 2012, 77, 1928-1938.                                                                                                                                         | 2.1 | 51        |
| 63 | Effect of cow age on the inÂvitro developmental competence of oocytes obtained after FSH stimulation and coasting treatments. Theriogenology, 2016, 86, 1240-1246.                                                                              | 2.1 | 51        |
| 64 | The influence of cAMP before or during bovine oocyte maturation on embryonic developmental competence. Theriogenology, 2001, 55, 1733-1743.                                                                                                     | 2.1 | 50        |
| 65 | Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology, 2018, 106, 21-29.                                                                                                                                 | 2.1 | 50        |
| 66 | Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle. Reproductive Biology and Endocrinology, 2015, 13, 17.                                                                                   | 3.3 | 49        |
| 67 | Successful in vitro maturation of oocytes: a matter of follicular differentiation. Biology of Reproduction, 2018, 98, 162-169.                                                                                                                  | 2.7 | 49        |
| 68 | Characterization and Identification of Epididymal Factors That Protect Ejaculated Bovine Sperm<br>During In Vitro Storage1. Biology of Reproduction, 2002, 66, 159-166.                                                                         | 2.7 | 48        |
| 69 | Effects of different kinases and phosphatases on nuclear and cytoplasmic maturation of bovine oocytes. Molecular Reproduction and Development, 1995, 42, 114-121.                                                                               | 2.0 | 47        |
| 70 | Quantification of Cyclin B1 and p34cdc2 in Bovine Cumulus-Oocyte Complexes and Expression Mapping of Genes Involved in the Cell Cycle by Complementary DNA Macroarrays1. Biology of Reproduction, 2002, 67, 1456-1464.                          | 2.7 | 47        |
| 71 | Birth of calves after in vitro fertilisation using laparoscopy and rabbit oviduct incubation of zygotes.<br>Veterinary Record, 1986, 119, 167-169.                                                                                              | 0.3 | 46        |
| 72 | Ontogeny and Cellular Localization of 1251-Labeled Basic Fibroblast Growth Factor and 1251-Labeled<br>Epidermal Growth Factor Binding Sites in Ovaries from Bovine Fetuses and Neonatal Calves1. Biology<br>of Reproduction, 1992, 47, 807-813. | 2.7 | 45        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Maternal housekeeping proteins translated during bovine oocyte maturation and early embryo development. Proteomics, 2006, 6, 3811-3820.                                                                                                            | 2.2 | 45        |
| 74 | The effects of 17β-estradiol and protein supplement on the response to purified and recombinant follicle stimulating hormone in bovine oocytes. Zygote, 2002, 10, 65-71.                                                                           | 1.1 | 44        |
| 75 | Temporary inhibition of meiosis resumption in vitro by adenylate cyclase stimulation in immature bovine oocytes. Theriogenology, 1990, 33, 757-767.                                                                                                | 2.1 | 43        |
| 76 | Capacitation in vitro of bovine spermatozoa by oviduct epithelial cell monolayer conditioned medium.<br>Molecular Reproduction and Development, 1995, 42, 318-324.                                                                                 | 2.0 | 43        |
| 77 | Influence of oviductal cells and conditioned medium on porcine gametes. Zygote, 2000, 8, 139-144.                                                                                                                                                  | 1.1 | 43        |
| 78 | An Environmentally Relevant Organochlorine Mixture Impairs Sperm Function and Embryo Development in the Porcine Model1. Biology of Reproduction, 2002, 67, 80-87.                                                                                  | 2.7 | 43        |
| 79 | Identification of follicular marker genes as pregnancy predictors for human IVF: new evidence for the involvement of luteinization process. Molecular Human Reproduction, 2010, 16, 548-556.                                                       | 2.8 | 43        |
| 80 | Follicle-stimulating hormone-induced estradiol and progesterone production by bovine antral and<br>mural granulosa cells cultured in vitro in a completely defined medium Journal of Animal Science,<br>1996, 74, 3012.                            | 0.5 | 42        |
| 81 | Effect of Bovine Oviduct Epithelial Cell Apical Plasma Membranes on Sperm Function Assessed by a<br>Novel Flow Cytometric Approach1. Biology of Reproduction, 2002, 67, 1125-1132.                                                                 | 2.7 | 41        |
| 82 | Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics, 2016, 17, 16. | 2.8 | 41        |
| 83 | Transcriptome profiling of bovine inner cell mass and trophectoderm derived from in vivo generated blastocysts. BMC Developmental Biology, 2015, 15, 49.                                                                                           | 2.1 | 40        |
| 84 | Chromatin remodelling and histone <sub>m</sub> RNA accumulation in bovine germinal vesicle oocytes. Molecular Reproduction and Development, 2015, 82, 450-462.                                                                                     | 2.0 | 38        |
| 85 | Interaction between differential gene expression profile and phenotype in bovine blastocysts<br>originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reproduction,<br>Fertility and Development, 2015, 27, 372.  | 0.4 | 37        |
| 86 | The age of the bull influences the transcriptome and epigenome of blastocysts produced by IVF.<br>Theriogenology, 2020, 144, 122-131.                                                                                                              | 2.1 | 36        |
| 87 | Cytogenetic study of parthenogenetically activated bovine oocytes matured in vivo and in vitro.<br>Gamete Research, 1988, 20, 265-274.                                                                                                             | 1.7 | 35        |
| 88 | Gene Expression Analysis of Bovine Oocytes With High Developmental Competence Obtained From<br>FSHâ€6timulated Animals. Molecular Reproduction and Development, 2013, 80, 428-440.                                                                 | 2.0 | 35        |
| 89 | Characterization of FSH signalling networks in bovine cumulus cells: a perspective on oocyte competence acquisition. Molecular Human Reproduction, 2015, 21, 688-701.                                                                              | 2.8 | 35        |
| 90 | Effect of growth factors and CO-culture with ovarian medulla on the activation of primordial follicles in explants of bovine ovarian cortex. Theriogenology, 2000, 54, 587-598.                                                                    | 2.1 | 34        |

| #   | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Transcriptome analysis of bovine oocytes from distinct follicle sizes: Insights from correlation network analysis. Molecular Reproduction and Development, 2016, 83, 558-569.                                                              | 2.0  | 34        |
| 92  | Distribution and dynamics of mitochondrial DNA methylation in oocytes, embryos and granulosa cells. Scientific Reports, 2019, 9, 11937.                                                                                                    | 3.3  | 34        |
| 93  | Cumulus cell gene expression associated with pre-ovulatory acquisition of developmental competence in bovine oocytes. Reproduction, Fertility and Development, 2014, 26, 855.                                                              | 0.4  | 33        |
| 94  | The impact of exposure to serum lipids during inÂvitro culture on the transcriptome of bovine blastocysts. Theriogenology, 2014, 81, 712-722.e3.                                                                                           | 2.1  | 33        |
| 95  | Origin of bovine follicular fluid and its effect during in vitro maturation on the developmental competence of bovine oocytes. Theriogenology, 2004, 62, 1596-1606.                                                                        | 2.1  | 32        |
| 96  | Transcriptomic analysis of in vivo and in vitro produced bovine embryos revealed a developmental change in cullin 1 expression during maternal-to-embryonic transition. Theriogenology, 2011, 75, 1582-1595.                               | 2.1  | 32        |
| 97  | Analysis of the gene expression pattern of bovine blastocysts at three stages of development.<br>Molecular Reproduction and Development, 2011, 78, 226-240.                                                                                | 2.0  | 31        |
| 98  | Meta-analysis of gene expression profiles in granulosa cells during folliculogenesis. Reproduction, 2016, 151, R103-R110.                                                                                                                  | 2.6  | 31        |
| 99  | Decreased Binding of Calmodulin to Bull Sperm Proteins during Heparin-Induced Capacitation1.<br>Biology of Reproduction, 1990, 42, 483-489.                                                                                                | 2.7  | 30        |
| 100 | Identification of Porcine Oocyte Proteins That Are Associated with Somatic Cell Nuclei after Co-Incubation1. Biology of Reproduction, 2004, 71, 1279-1289.                                                                                 | 2.7  | 30        |
| 101 | Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts. Molecular Reproduction and Development, 2013, 80, 297-314.                                                         | 2.0  | 30        |
| 102 | The influence of <i>in vitro</i> fertilization and embryo culture on the embryo epigenetic<br>constituents and the possible consequences in the bovine model. Journal of Developmental Origins of<br>Health and Disease, 2017, 8, 411-417. | 1.4  | 30        |
| 103 | Seminal vesicle production and secretion of growth hormone into seminal fluid. Nature<br>Biotechnology, 1999, 17, 1087-1090.                                                                                                               | 17.5 | 29        |
| 104 | The dynamics of gene products fluctuation during bovine preâ€hatching development. Molecular<br>Reproduction and Development, 2009, 76, 762-772.                                                                                           | 2.0  | 29        |
| 105 | Transcriptome meta-analysis of three follicular compartments and its correlation with ovarian<br>follicle maturity and oocyte developmental competence in cows. Physiological Genomics, 2016, 48,<br>633-643.                              | 2.3  | 28        |
| 106 | The co-culture of cumulus-enclosed bovine oocytes and hemi-sections of follicles: Effects on meiotic resumption. Theriogenology, 1993, 40, 933-942.                                                                                        | 2.1  | 27        |
| 107 | Effects of cumulus cells and follicle-stimulating hormone during in vitro maturation on parthenogenetic activation of bovine oocytes. Molecular Reproduction and Development, 1995, 42, 425-431.                                           | 2.0  | 27        |
| 108 | Granulosa cell function and oocyte competence: Super-follicles, super-moms and super-stimulation in cattle. Animal Reproduction Science, 2014, 149, 80-89.                                                                                 | 1.5  | 27        |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Somatic environment and germinal differentiation in antral follicle: The effect of FSH withdrawal and basal LH on oocyte competence acquisition in cattle. Theriogenology, 2016, 86, 54-61.                                                  | 2.1 | 27        |
| 110 | Effect of coculturing spermatozoa with oviductal cells on the incidence of polyspermy in pig in vitro fertilization. Molecular Reproduction and Development, 1995, 41, 360-367.                                                              | 2.0 | 26        |
| 111 | Modulation of Postthaw Motility, Survival, Calcium Uptake, and Fertility of Bovine Sperm by<br>Magnesium and Manganese. Journal of Dairy Science, 1996, 79, 2163-2169.                                                                       | 3.4 | 26        |
| 112 | Effect of microinjection time during postfertilization S-phase on bovine embryonic development.<br>Molecular Reproduction and Development, 1995, 41, 184-194.                                                                                | 2.0 | 24        |
| 113 | Role of the Cyclic Adenosine Monophosphate-Dependent Protein Kinase in the Control of Meiotic<br>Resumption in Bovine Oocytes Cultured with Thecal Cell Monolayers1. Biology of Reproduction, 1997,<br>56, 1363-1369.                        | 2.7 | 24        |
| 114 | Evolutionary conservation of the oocyte transcriptome among vertebrates and its implications for understanding human reproductive function. Molecular Human Reproduction, 2013, 19, 369-379.                                                 | 2.8 | 24        |
| 115 | Transcriptional characteristics of different sized follicles in relation to embryo transferability:<br>potential role of hepatocyte growth factor signalling. Molecular Human Reproduction, 2016, 22,<br>475-484.                            | 2.8 | 24        |
| 116 | Sperm miRNAs— potential mediators of bull age and early embryo development. BMC Genomics, 2020, 21,<br>798.                                                                                                                                  | 2.8 | 24        |
| 117 | Origin of the follicular fluid added to the media during bovine IVM influences embryonic<br>development. Theriogenology, 1995, 44, 85-94.                                                                                                    | 2.1 | 22        |
| 118 | The influence of cumulus-oocyte complex morphology and meiotic inhibitors on the kinetics of nuclear maturation in cattle. Theriogenology, 2001, 55, 911-922.                                                                                | 2.1 | 22        |
| 119 | Providing a stable methodological basis for comparing transcript abundance of developing embryos using microarrays. Molecular Human Reproduction, 2010, 16, 601-616.                                                                         | 2.8 | 22        |
| 120 | FSH in vitro versus LH in vivo: similar genomic effects on the cumulus. Journal of Ovarian Research, 2013, 6, 68.                                                                                                                            | 3.0 | 22        |
| 121 | Effect of an environmentally relevant metabolized organochlorine mixture on porcine<br>cumulus–oocyte complexes. Reproductive Toxicology, 2007, 23, 145-152.                                                                                 | 2.9 | 21        |
| 122 | Discovery, identification and sequence analysis of RNAs selected for very short or long poly A tail in immature bovine oocytes. Molecular Human Reproduction, 2014, 20, 127-138.                                                             | 2.8 | 21        |
| 123 | Effects of intramuscular administration of folic acid and vitamin B12 on granulosa cells gene expression in postpartum dairy cows. Journal of Dairy Science, 2015, 98, 7797-7809.                                                            | 3.4 | 21        |
| 124 | The effect of energy balance on the transcriptome of bovine granulosa cells at 60Âdays postpartum.<br>Theriogenology, 2015, 84, 1350-1361.e6.                                                                                                | 2.1 | 21        |
| 125 | Ovarian morphological conditions and the effect of injection of human chorionic gonadotropin on<br>ovulation rates in prepuberal gilts with two morphologically different ovarian types2. Journal of<br>Animal Science, 1991, 69, 3774-3779. | 0.5 | 20        |
| 126 | Differential Response to Gonadotropins and Prostaglandin E2 in Ovarian Tissue during Prenatal and<br>Postnatal Development in Cattle1. Biology of Reproduction, 1992, 46, 1034-1041.                                                         | 2.7 | 20        |

| #   | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | The use of ejaculated boar semen after freezing in 2 or 6% glucerol for in vitro fertilization of porcine oocytes matured in vitro. Theriogenology, 1992, 38, 1065-1075.                                                                                                       | 2.1  | 20        |
| 128 | Protein synthesis is not required for male pronuclear formation in bovine zygotes. Zygote, 1996, 4, 41-48.                                                                                                                                                                     | 1.1  | 19        |
| 129 | Immunoneutralization of Transforming Growth Factor α Present in Bovine Follicular Fluid Prevents the Suppression of the Follicle-Stimulating Hormone-Induced Production of Estradiol by Bovine Granulosa Cells Cultured in Vitro1. Biology of Reproduction, 1997, 57, 341-346. | 2.7  | 19        |
| 130 | Transcriptomic analysis of cyclic AMP response in bovine cumulus cells. Physiological Genomics, 2015, 47, 432-442.                                                                                                                                                             | 2.3  | 19        |
| 131 | Influence of Follicular Wall on Meiotic Resumption of Bovine Oocytes When Cultured Inside or<br>Outside Hemi-Sections Journal of Reproduction and Development, 1994, 40, 125-132.                                                                                              | 1.4  | 19        |
| 132 | Effects of estrous cycle, steroids and localization of oviductal cells on in vitro secretion of sperm motility factor(s). Theriogenology, 1995, 44, 119-128.                                                                                                                   | 2.1  | 18        |
| 133 | Responses of bovine early embryos to S-adenosyl methionine supplementation in culture. Epigenomics, 2016, 8, 1039-1060.                                                                                                                                                        | 2.1  | 18        |
| 134 | Regulation of <i>ATF1</i> and <i>ATF2</i> transcripts by sequences in their 3′ untranslated region in cleavageâ€stage cattle embryos. Molecular Reproduction and Development, 2017, 84, 296-309.                                                                               | 2.0  | 18        |
| 135 | Real-time monitoring of aRNA production during T7 amplification to prevent the loss of sample representation during microarray hybridization sample preparation. Nucleic Acids Research, 2009, 37, e65-e65.                                                                    | 14.5 | 17        |
| 136 | Gene expression analysis of bovine oocytes at optimal coasting time combined with GnRH antagonist<br>during theÂno-FSH period. Theriogenology, 2014, 81, 1092-1100.                                                                                                            | 2.1  | 17        |
| 137 | Insulin during inÂvitro oocyte maturation has an impact on development, mitochondria, and<br>cytoskeleton in bovine day 8 blastocysts. Theriogenology, 2017, 101, 15-25.                                                                                                       | 2.1  | 17        |
| 138 | Effects of gonadotropin treatment on ovarian follicle growth, oocyte quality and in vitro fertilization of oocytes in prepubertal gilts. Theriogenology, 1996, 46, 717-726.                                                                                                    | 2.1  | 16        |
| 139 | Epithelial and stromal uterine cells cultured in vitro protect bovine sperm from hydrogen peroxide.<br>Theriogenology, 2000, 54, 355-369.                                                                                                                                      | 2.1  | 16        |
| 140 | Transcriptomic evaluation of bovine blastocysts obtained from peri-pubertal oocyte donors.<br>Theriogenology, 2017, 93, 111-123.                                                                                                                                               | 2.1  | 16        |
| 141 | Barriers to the use of toxicogenomics data in human health risk assessment: A survey of Canadian risk assessors. Regulatory Toxicology and Pharmacology, 2017, 85, 119-123.                                                                                                    | 2.7  | 16        |
| 142 | Transcriptomic analysis of gene cascades involved in protein kinase A and C signaling in the KGN line of human ovarian granulosa tumor cellsâ€. Biology of Reproduction, 2017, 96, 855-865.                                                                                    | 2.7  | 16        |
| 143 | Gene expression analysis of follicular cells revealed inflammation as a potential IVF failure cause.<br>Journal of Assisted Reproduction and Genetics, 2019, 36, 1195-1210.                                                                                                    | 2.5  | 16        |
| 144 | Embryonic response to high beta-hydroxybutyrate (BHB) levels in postpartum dairy cows. Domestic<br>Animal Endocrinology, 2020, 72, 106431.                                                                                                                                     | 1.6  | 16        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Evaluation of virus decontamination techniques for porcine embryos produced in vitro.<br>Theriogenology, 2005, 63, 2343-2355.                                                                                  | 2.1 | 15        |
| 146 | Rapidly cleaving bovine twoâ€cell embryos have better developmental potential and a distinctive mRNA pattern. Molecular Reproduction and Development, 2014, 81, 31-41.                                         | 2.0 | 15        |
| 147 | Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging. Reproduction, Fertility and Development, 2016, 28, 795.                   | 0.4 | 15        |
| 148 | Accumulation of Chromatin Remodelling Enzyme and Histone Transcripts in Bovine Oocytes. Results and Problems in Cell Differentiation, 2017, 63, 223-255.                                                       | 0.7 | 15        |
| 149 | Folliculogenesis and acquisition of oocyte competence in cows. Animal Reproduction, 2019, 16, 449-454.                                                                                                         | 1.0 | 15        |
| 150 | Protein phosphorylation is essential for formation of male pronucleus in bovine oocytes. Molecular<br>Reproduction and Development, 1999, 52, 43-49.                                                           | 2.0 | 14        |
| 151 | The effects of repeated laparoscopic surgery used for ovarian examination and follicular aspiration in cows. Animal Reproduction Science, 1985, 9, 25-30.                                                      | 1.5 | 13        |
| 152 | Developmental potential of early bovine zygotes submitted to centrifugation and microinjection following in vitro maturation of oocytes. Theriogenology, 1990, 34, 417-425.                                    | 2.1 | 13        |
| 153 | Follicle capacitation: a meta-analysis to investigate the transcriptome dynamics following<br>follicle-stimulating hormone decline in bovine granulosa cellsâ€. Biology of Reproduction, 2018, 99,<br>877-887. | 2.7 | 13        |
| 154 | Manipulation of chromosome condensation by protein synthesis inhibitors and cyclic AMP during maturation of bovine oocytes. Theriogenology, 1994, 41, 819-827.                                                 | 2.1 | 11        |
| 155 | Transcriptome analysis of bovine granulosa cells of preovulatory follicles harvested 30, 60, 90, and<br>120Âdays postpartum. Theriogenology, 2014, 82, 580-591.e5.                                             | 2.1 | 11        |
| 156 | Effects of Inhibition of Meiotic Resumption upon the Subsequent Development of Bovine Oocytes In<br>Vitro Journal of Reproduction and Development, 1995, 41, 255-262.                                          | 1.4 | 11        |
| 157 | Epigenetic inheritance of acquired traits through DNA methylation. Animal Frontiers, 2021, 11, 19-27.                                                                                                          | 1.7 | 11        |
| 158 | Ovulation and follicular growth in gonadotropin-treated gilts followed by in vitro fertilization and development of their oocytes. Theriogenology, 2000, 53, 1421-1437.                                        | 2.1 | 10        |
| 159 | Low concentrations of bromodichloromethane induce a toxicogenomic response in porcine embryos in vitro. Reproductive Toxicology, 2016, 66, 44-55.                                                              | 2.9 | 10        |
| 160 | Mechanisms involved in porcine early embryo survival following ethanol exposure. Toxicological<br>Sciences, 2017, 156, kfw256.                                                                                 | 3.1 | 10        |
| 161 | Metabolic stress induces modifications in the epigenetic program of preimplantation bovine embryos.<br>Molecular Reproduction and Development, 2018, 85, 117-127.                                              | 2.0 | 10        |
| 162 | Identification and characterization of a novel bovine oocyte-specific secreted protein gene. Gene, 2006, 375, 44-53.                                                                                           | 2.2 | 9         |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Availability, Quality, and Relevance of Toxicogenomics Data for Human Health Risk Assessment: A<br>Scoping Review of the Literature on Trihalomethanes. Toxicological Sciences, 2018, 163, 364-373.    | 3.1 | 9         |
| 164 | DNA methylation pattern of bovine blastocysts associated with hyperinsulinemia in vitro. Molecular<br>Reproduction and Development, 2018, 85, 599-611.                                                 | 2.0 | 9         |
| 165 | Specific imprinted genes demethylation in association with oocyte donor's age and culture conditions in bovine embryos assessed at day 7 and 12 post insemination. Theriogenology, 2020, 158, 321-330. | 2.1 | 9         |
| 166 | An environmentally relevant mixture of organochlorines, their metabolites and effects on preimplantation development of porcine embryos. Reproductive Toxicology, 2008, 25, 361-366.                   | 2.9 | 8         |
| 167 | Gene expression analysis of bovine blastocysts produced by parthenogenic activation or fertilisation.<br>Reproduction, Fertility and Development, 2011, 23, 591.                                       | 0.4 | 8         |
| 168 | Toward building the cow folliculome. Animal Reproduction Science, 2014, 149, 90-97.                                                                                                                    | 1.5 | 8         |
| 169 | Comparative analysis of granulosa cell gene expression in association with oocyte competence in FSH-stimulated Holstein cows. Reproduction, Fertility and Development, 2017, 29, 2324.                 | 0.4 | 8         |
| 170 | Active 3ʹ–5ʹ cyclic nucleotide phosphodiesterases are present in detergent-resistant membranes of mural granulosa cells. Reproduction, Fertility and Development, 2017, 29, 778.                       | 0.4 | 8         |
| 171 | Short-term effect of FSH on gene expression in bovine granulosa cells in vitro. Reproduction,<br>Fertility and Development, 2018, 30, 1154.                                                            | 0.4 | 8         |
| 172 | Reversible changes in protein phosphorylation during germinal vesicle breakdown and pronuclear formation in bovine oocytes in vitro. Zygote, 2003, 11, 119-129.                                        | 1.1 | 7         |
| 173 | ASAS-SSR Triennial Reproduction Symposium: The use of natural cycle's follicular dynamic to improve oocyte quality in dairy cows and heifers1,2. Journal of Animal Science, 2018, 96, 2971-2976.       | 0.5 | 7         |
| 174 | Epigenomic and transcriptomic analyses reveal early activation of the HPG axis in in vitroâ€produced male dairy calves. FASEB Journal, 2021, 35, e21882.                                               | 0.5 | 7         |
| 175 | Melatonin Signaling Pathways Implicated in Metabolic Processes in Human Granulosa Cells (KGN).<br>International Journal of Molecular Sciences, 2022, 23, 2988.                                         | 4.1 | 7         |
| 176 | The effect of preincubation of frozen-thawed spermatozoa with oviductal cells on the in vitro penetration of porcine oocytes. Theriogenology, 1996, 46, 1181-1189.                                     | 2.1 | 6         |
| 177 | Effect of steroids and oviductal cells, from the different parts of the oviduct, on the incidence of monospermy in porcine in vitro fertilization. Theriogenology, 1996, 46, 449-458.                  | 2.1 | 6         |
| 178 | Influence of luteinizing hormone support on granulosa cells transcriptome in cattle. Animal Science<br>Journal, 2018, 89, 21-30.                                                                       | 1.4 | 6         |
| 179 | Gene analysis of major signaling pathways regulated by gonadotropins in human ovarian granulosa<br>tumor cells (KGN)â€. Biology of Reproduction, 2020, 103, 583-598.                                   | 2.7 | 6         |
| 180 | Effects of harvest methods of bovine oocytes co-cultured with follicular hemisections in vitro on nuclear maturation. Theriogenology, 1996, 46, 1243-1250.                                             | 2.1 | 5         |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Effect of progesterone and/or estradiol-17β on sperm penetration in vitro of bovine oocytes.<br>Theriogenology, 1996, 46, 459-469.                                                                                                | 2.1 | 5         |
| 182 | Effect of bovine follicular fluid from healthy and atretic follicles on follicle-stimulating<br>hormone-induced production of estradiol by bovine granulosa cells cultured in vitro Journal of<br>Animal Science, 1998, 76, 1172. | 0.5 | 5         |
| 183 | Is aneuploidy a defense mechanism to prevent maternity later in a woman's life. Journal of Assisted Reproduction and Genetics, 2011, 28, 209-210.                                                                                 | 2.5 | 5         |
| 184 | Transcriptome and epigenome analysis of porcine embryos from non-esterified fatty acid-exposed occytes. Domestic Animal Endocrinology, 2021, 76, 106605.                                                                          | 1.6 | 5         |
| 185 | In vitro development of in vitro fertilized bovine follicular oocytes obtained by laparoscopy. Animal<br>Reproduction Science, 1986, 12, 21-29.                                                                                   | 1.5 | 4         |
| 186 | Temporary inhibition of in vitro meiotic resumption by adenylate cyclase stimulation in immature bovine oocytes. Theriogenology, 1989, 31, 257.                                                                                   | 2.1 | 4         |
| 187 | Effects of conditioned media on porcine embryos at different stages of development. Theriogenology, 1997, 47, 1337-1345.                                                                                                          | 2.1 | 4         |
| 188 | Oocyte quality and embryo production in cattle. Canadian Journal of Animal Science, 1998, 78, 513-516.                                                                                                                            | 1.5 | 4         |
| 189 | Lipid profile of bovine blastocysts exposed to insulin during in vitro oocyte maturation.<br>Reproduction, Fertility and Development, 2018, 30, 1253.                                                                             | 0.4 | 4         |
| 190 | Effect of heifer age on the granulosa cell transcriptome after ovarian stimulation. Reproduction,<br>Fertility and Development, 2018, 30, 980.                                                                                    | 0.4 | 4         |
| 191 | DNA methylation status of bovine blastocysts obtained from peripubertal oocyte donors. Molecular<br>Reproduction and Development, 2020, 87, 910-924.                                                                              | 2.0 | 4         |
| 192 | In vitro development of embryos from superovulated gilts treated with the progesterone agonist,<br>altrenogest (Regu-Mate) or the prostaglandin analogue, cloprostenol (Planate). Theriogenology, 1996,<br>46, 1045-1052.         | 2.1 | 3         |
| 193 | Protein phosphorylation in bovine oocytes following fertilisation and parthenogenetic activation in vitro. Zygote, 1999, 7, 135-142.                                                                                              | 1.1 | 3         |
| 194 | The effects of LH inhibition with cetrorelix on cumulus cell gene expression during the luteal phase under ovarian coasting stimulation in cattle. Domestic Animal Endocrinology, 2020, 72, 106429.                               | 1.6 | 3         |
| 195 | Mitoepigenetics: Methylation of mitochondrial DNA is strandâ€biased in bovine oocytes and embryos.<br>Reproduction in Domestic Animals, 2020, 55, 1455-1458.                                                                      | 1.4 | 3         |
| 196 | Bovine oocyte exposure to perfluorohexane sulfonate (PFHxS) induces phenotypic, transcriptomic, and DNA methylation changes in resulting embryos in vitro. Reproductive Toxicology, 2022, 109, 19-30.                             | 2.9 | 3         |
| 197 | Patients who failed to conceive following an in vitro fertilization cycle can be clustered into<br>different failure causes using gene expression hierarchical analysisâ€. Biology of Reproduction, 2020,<br>103, 599-607.        | 2.7 | 2         |
| 198 | Cocultured porcine granulosa cells respond to excess non-esterified fatty acids during in vitro maturation. Journal of Ovarian Research, 2021, 14, 142.                                                                           | 3.0 | 2         |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Gene cascade analysis in human granulosa tumor cells (KGN) following exposure to high levels of free fatty acids and insulin. Journal of Ovarian Research, 2021, 14, 178. | 3.0 | 2         |
| 200 | IGF2R, KCNQ1, PLAGL1, and SNRPN DNA methylation is completed in bovine by the early antral follicle stage. Molecular Reproduction and Development, 0, , .                 | 2.0 | 2         |
| 201 | Hyperinsulinemia during in vitro oocyte maturation changes gene expression of insulin signaling in bovine Day-8 embryos. Acta Veterinaria Scandinavica, 2015, 57, O10.    | 1.6 | 1         |
| 202 | Effects of follicular ablation and GnRH on synchronization of ovulation and conception rates in embryo recipient heifers. Animal Reproduction Science, 2020, 221, 106596. | 1.5 | 1         |
| 203 | Effects of NEFAs during IVM on pig embryos from granulosa cellâ€cocultured oocytes. Molecular<br>Reproduction and Development, 2021, 88, 805-816.                         | 2.0 | 1         |
| 204 | Preface. Animal Reproduction Science, 2014, 149, 1-2.                                                                                                                     | 1.5 | 0         |
| 205 | J DOHaD issue on ART and DOHaD. Journal of Developmental Origins of Health and Disease, 2017, 8,<br>385-386.                                                              | 1.4 | 0         |